These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9733534)

  • 21. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.
    Solís-Guzmán MG; Argüello-Astorga G; López-Bucio J; Ruiz-Herrera LF; López-Meza JE; Sánchez-Calderón L; Carreón-Abud Y; Martínez-Trujillo M
    Gene Expr Patterns; 2017 Nov; 25-26():92-101. PubMed ID: 28642207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermoperiod affects the diurnal cycle of nitrate reductase expression and activity in pineapple plants by modulating the endogenous levels of cytokinins.
    Freschi L; Nievola CC; Rodrigues MA; Domingues DS; Van Sluys MA; Mercier H
    Physiol Plant; 2009 Nov; 137(3):201-12. PubMed ID: 19832938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of sucrose-phosphate synthase by a protein factor/sucrose-phosphate phosphatase.
    Salerno GL; Echeverria E; Pontis HG
    Cell Mol Biol (Noisy-le-grand); 1996 Jul; 42(5):665-72. PubMed ID: 8832097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.
    Roy Choudhury S; Roy S; Das R; Sengupta DN
    Planta; 2008 Dec; 229(1):207-23. PubMed ID: 18830708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of nitrate reduction in Arabidopsis WT and hxk1 mutant under C and N metabolites.
    Reda M
    Physiol Plant; 2013 Oct; 149(2):260-72. PubMed ID: 23480350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 14-3-3 protein down-regulates key enzyme activities of nitrate and carbohydrate metabolism in potato plants.
    Zuk M; Weber R; Szopa J
    J Agric Food Chem; 2005 May; 53(9):3454-60. PubMed ID: 15853387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves.
    Foyer CH; Valadier MH; Migge A; Becker TW
    Plant Physiol; 1998 May; 117(1):283-92. PubMed ID: 9576798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.
    Toroser D; Huber SC
    Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-induced phase shifting of circadian rhythms in cotton seedlings as related to variations in chilling resistance.
    Rikin A
    Planta; 1991 Oct; 185(3):407-14. PubMed ID: 24186427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of carbohydrates in diurnal chilling sensitivity of tomato seedlings.
    King AI; Joyce DC; Reid MS
    Plant Physiol; 1988 Mar; 86(3):764-8. PubMed ID: 16665984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A kinase-phosphatase signaling module with BSK8 and BSL2 involved in regulation of sucrose-phosphate synthase.
    Wu X; Sklodowski K; Encke B; Schulze WX
    J Proteome Res; 2014 Jul; 13(7):3397-409. PubMed ID: 24924143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis.
    Konishi M; Yanagisawa S
    Plant Cell Physiol; 2011 May; 52(5):824-36. PubMed ID: 21454300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA.
    Ferrario-Mery S; Valadier MH; Foyer CH
    Plant Physiol; 1998 May; 117(1):293-302. PubMed ID: 9576799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diurnal changes in the chilling sensitivity of seedlings.
    King AI; Reid MS; Patterson BD
    Plant Physiol; 1982 Jul; 70(1):211-4. PubMed ID: 16662448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-induced leakage from chilling-sensitive and chilling-resistant plants.
    Paull RE
    Plant Physiol; 1981 Jul; 68(1):149-53. PubMed ID: 16661859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response to chilling of tomato seedlings and cells in suspension cultures.
    Breidenbach RW; Waring AJ
    Plant Physiol; 1977 Aug; 60(2):190-2. PubMed ID: 16660056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The 14-3-3 proteins: cellular regulators of plant metabolism.
    Chung HJ; Sehnke PC; Ferl RJ
    Trends Plant Sci; 1999 Sep; 4(9):367-371. PubMed ID: 10462770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-temperature physics: a chilling effect for molecules.
    Barry JF; Demille D
    Nature; 2012 Nov; 491(7425):539-40. PubMed ID: 23151477
    [No Abstract]   [Full Text] [Related]  

  • 39. Relationship between the Physical Nature of Mitochondrial Membranes and Chilling Sensitivity in Plants.
    Lyons JM; Wheaton TA; Pratt HK
    Plant Physiol; 1964 Mar; 39(2):262-8. PubMed ID: 16655908
    [No Abstract]   [Full Text] [Related]  

  • 40. Pathogenesis of black quarter; effect of chilling agencies.
    MINETT FC
    J Comp Pathol Ther; 1948 Oct; 58(4):259-66. PubMed ID: 18099886
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.