BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 9733630)

  • 1. Lecithin protects against plasma membrane disruption by bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1998 Aug; 78(2):131-6. PubMed ID: 9733630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile salt-membrane interactions and the physico-chemical mechanisms of bile salt toxicity.
    Heuman DM
    Ital J Gastroenterol; 1995 Sep; 27(7):372-5. PubMed ID: 8563009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes.
    Dial EJ; Rooijakkers SH; Darling RL; Romero JJ; Lichtenberger LM
    J Gastroenterol Hepatol; 2008 Mar; 23(3):430-6. PubMed ID: 17868333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of mixtures of bile salt taurine conjugates between lecithin-cholesterol vesicles and aqueous media: an empirical model.
    Heuman DM
    J Lipid Res; 1997 Jun; 38(6):1217-28. PubMed ID: 9215549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of phospholipids from erythrocyte membranes by taurocholate is determined by their transbilayer orientation and hydrophobic backbone.
    Wüstner D; Pomorski T; Herrmann A; Müller P
    Biochemistry; 1998 Dec; 37(48):17093-103. PubMed ID: 9836604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasielastic light scattering studies of aqueous biliary lipid systems and native bile.
    Mazer NA
    Hepatology; 1990 Sep; 12(3 Pt 2):39S-44S. PubMed ID: 2210655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits.
    Dongowski G; Fritzsch B; Giessler J; Härtl A; Kuhlmann O; Neubert RH
    Eur J Pharm Biopharm; 2005 May; 60(1):147-51. PubMed ID: 15848066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo.
    Moschetta A; vanBerge-Henegouwen GP; Portincasa P; Renooij WL; Groen AK; van Erpecum KJ
    J Hepatol; 2001 Apr; 34(4):492-9. PubMed ID: 11394647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts.
    Heuman DM; Bajaj R
    Gastroenterology; 1994 May; 106(5):1333-41. PubMed ID: 8174892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of mixtures of bile salt taurine conjugates to lecithin-cholesterol membranes: implications for bile salt toxicity and cytoprotection.
    Heuman DM; Bajaj RS; Lin Q
    J Lipid Res; 1996 Mar; 37(3):562-73. PubMed ID: 8728319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate separation of biliary lipid aggregates requires the correct intermixed micellar/intervesicular bile salt concentration.
    Donovan JM; Jackson AA
    Hepatology; 1998 Mar; 27(3):641-8. PubMed ID: 9500688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC
    Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and thermodynamics of dissolution of lecithin by bile salts.
    Lindenbaum S; Rajagopalan N
    Hepatology; 1984; 4(5 Suppl):124S-128S. PubMed ID: 6479867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial characterization of cytoprotective mechanisms of lecithin against bile salt-induced bile duct damage.
    Tsuboi K; Tazuma S; Nishioka T; Chayama K
    J Gastroenterol; 2004 Oct; 39(10):955-60. PubMed ID: 15549448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile salt structure and phase equilibria in aqueous bile salt and bile salt-lecithin systems.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):138S-142S. PubMed ID: 6479869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes.
    Albalak A; Zeidel ML; Zucker SD; Jackson AA; Donovan JM
    Biochemistry; 1996 Jun; 35(24):7936-45. PubMed ID: 8672496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.