These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9733923)

  • 1. Synaptic effects of nitric oxide on enkephalinergic, GABAergic, and glutamatergic networks of the rat periaqueductal gray.
    Hall CW; Behbehani MM
    Brain Res; 1998 Sep; 805(1-2):69-87. PubMed ID: 9733923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):303-9. PubMed ID: 7812626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The medial preoptic nucleus of the hypothalamus modulates activity of nitric oxide sensitive neurons in the midbrain periaqueductal gray.
    Hall CW; Behbehani MM
    Brain Res; 1997 Aug; 765(2):208-17. PubMed ID: 9313893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of GABA receptors in nitric oxide inhibition of dorsolateral periaqueductal gray neurons.
    Xing J; Li DP; Li J
    Neuropharmacology; 2008 Mar; 54(4):734-44. PubMed ID: 18222497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of cardiovascular responses and neurotransmission during peripheral nociception following nNOS antagonism within the periaqueductal gray.
    Karlsson GA; Chaitoff KA; Hossain S; Böhlke M; Maher TJ; Ally A
    Brain Res; 2007 Apr; 1143():150-60. PubMed ID: 17320064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
    Aubrey KR; Drew GM; Jeong HJ; Lau BK; Vaughan CW
    J Physiol; 2017 Jan; 595(1):165-178. PubMed ID: 27461371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro.
    Vaughan CW; Christie MJ
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):463-72. PubMed ID: 9032693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons.
    Budai D; Fields HL
    J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoelectron microscopy of enkephalinergic innervation of GABAergic neurons in the periaqueductal gray.
    Wang QP; Guan JL; Nakai Y
    Brain Res; 1994 Nov; 665(1):39-46. PubMed ID: 7882016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro electrophysiological characterization of midbrain periaqueductal gray neurons in female rats: responses to GABA- and Met-enkephalin-related agents.
    Ogawa S; Kow LM; Pfaff DW
    Brain Res; 1994 Dec; 666(2):239-49. PubMed ID: 7882034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition.
    Lin Q; Peng YB; Willis WD
    J Neurophysiol; 1996 Jan; 75(1):109-23. PubMed ID: 8822545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of GABA in medullary raphe-evoked modulation of neuronal activity in the periaqueductal grey matter in the rat.
    Lovick TA
    Exp Brain Res; 2001 Mar; 137(2):214-8. PubMed ID: 11315550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray.
    Mitchell VA; Jeong HJ; Drew GM; Vaughan CW
    Neuropsychopharmacology; 2011 Aug; 36(9):1801-10. PubMed ID: 21525858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat.
    Behbehani MM; Jiang M; Chandler SD; Ennis M
    Pain; 1990 Feb; 40(2):195-204. PubMed ID: 2308765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actions of epinephrine on neurons in the rat midbrain periaqueductal gray maintained in vitro.
    Jiang M; Chandler SD; Ennis M; Shipley MT; Behbehani MM
    Brain Res Bull; 1992 Dec; 29(6):871-7. PubMed ID: 1335350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats.
    Stiller CO; Gustafsson H; Fried K; Brodin E
    Brain Res; 1997 Nov; 774(1-2):149-58. PubMed ID: 9452203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic morphine reduces GABA release in the lateral but not the medial portion of the midbrain periaqueductal gray of the rat.
    Renno WM; Mullett MA; Beitz AJ
    Brain Res; 1992 Oct; 594(2):221-32. PubMed ID: 1450948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia.
    Inui K; Nosaka S
    J Neurophysiol; 1993 Dec; 70(6):2205-14. PubMed ID: 7907131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microinjection of muscimol into caudal periaqueductal gray lowers body temperature and attenuates increases in temperature and activity evoked from the dorsomedial hypothalamus.
    de Menezes RC; Zaretsky DV; Fontes MA; DiMicco JA
    Brain Res; 2006 May; 1092(1):129-37. PubMed ID: 16677620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.