These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 9733959)
1. Membrane sterol composition modulates the pore forming activity of syringomycin E in human red blood cells. Blasko K; Schagina LV; Agner G; Kaulin YA; Takemoto JY Biochim Biophys Acta; 1998 Aug; 1373(1):163-9. PubMed ID: 9733959 [TBL] [Abstract][Full Text] [Related]
2. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Agner G; Kaulin YA; Gurnev PA; Szabo Z; Schagina LV; Takemoto JY; Blasko K Bioelectrochemistry; 2000 Dec; 52(2):161-7. PubMed ID: 11129239 [TBL] [Abstract][Full Text] [Related]
3. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. Agner G; Kaulin YA; Schagina LV; Takemoto JY; Blasko K Biochim Biophys Acta; 2000 Jun; 1466(1-2):79-86. PubMed ID: 10825433 [TBL] [Abstract][Full Text] [Related]
4. Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes. Szabó Z; Gróf P; Schagina LV; Gurnev PA; Takemoto JY; Mátyus E; Blaskó K Biochim Biophys Acta; 2002 Dec; 1567(1-2):143-9. PubMed ID: 12488047 [TBL] [Abstract][Full Text] [Related]
5. Altering the activity of syringomycin E via the membrane dipole potential. Ostroumova OS; Malev VV; Bessonov AN; Takemoto JY; Schagina LV Langmuir; 2008 Apr; 24(7):2987-91. PubMed ID: 18324870 [TBL] [Abstract][Full Text] [Related]
6. Role of ergosterol in growth inhibition of Saccharomyces cerevisiae by syringomycin E. Wangspa R; Takemoto JY FEMS Microbiol Lett; 1998 Oct; 167(2):215-20. PubMed ID: 9809422 [TBL] [Abstract][Full Text] [Related]
7. The effect of sterols on the sensitivity of membranes to the channel-forming antifungal antibiotic, syringomycin E. Feigin AM; Schagina LV; Takemoto JY; Teeter JH; Brand JG Biochim Biophys Acta; 1997 Feb; 1324(1):102-10. PubMed ID: 9059503 [TBL] [Abstract][Full Text] [Related]
8. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Dalla Serra M; Fagiuoli G; Nordera P; Bernhart I; Della Volpe C; Di Giorgio D; Ballio A; Menestrina G Mol Plant Microbe Interact; 1999 May; 12(5):391-400. PubMed ID: 10226372 [TBL] [Abstract][Full Text] [Related]
9. Influence of lead ions on cation permeability in human red cell ghosts. Simons TJ J Membr Biol; 1985; 84(1):61-71. PubMed ID: 3999125 [TBL] [Abstract][Full Text] [Related]
10. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes. Dennis VW; Stead NW; Andreoli TE J Gen Physiol; 1970 Mar; 55(3):375-400. PubMed ID: 4938534 [TBL] [Abstract][Full Text] [Related]
11. Interaction of iturin A, a lipopeptide antibiotic, with Saccharomyces cerevisiae cells: influence of the sterol membrane composition. Latoud C; Peypoux F; Michel G Can J Microbiol; 1990 Jun; 36(6):384-9. PubMed ID: 2204475 [TBL] [Abstract][Full Text] [Related]
12. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Maget-Dana R; Peypoux F Toxicology; 1994 Feb; 87(1-3):151-74. PubMed ID: 8160184 [TBL] [Abstract][Full Text] [Related]
13. Blocking ion channels induced by antifungal lipopeptide syringomycin E with amide-linked local anesthetics. Zakharova AA; Efimova SS; Schagina LV; Malev VV; Ostroumova OS Sci Rep; 2018 Aug; 8(1):11543. PubMed ID: 30069037 [TBL] [Abstract][Full Text] [Related]
14. Interaction between propranolol and electron donors in altering the calcium ion-dependent potassium ion-permeability of the human red blood cell membrane. Skulskii IA; Manninen V Acta Physiol Scand; 1984 Mar; 120(3):329-32. PubMed ID: 6331072 [TBL] [Abstract][Full Text] [Related]
15. Sterol specific inactivation of gramicidin A induced membrane cation permeability. Schagina LV; Korchev YE; Grinfeldt AE; Lev AA; Blastó K Biochim Biophys Acta; 1992 Aug; 1109(1):91-6. PubMed ID: 1380301 [TBL] [Abstract][Full Text] [Related]
16. Two types of syringomycin E channels in sphingomyelin-containing bilayers. Efimova SS; Zakharova AA; Schagina LV; Ostroumova OS Eur Biophys J; 2016 Jan; 45(1):91-8. PubMed ID: 26658744 [TBL] [Abstract][Full Text] [Related]
17. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Hutchison ML; Tester MA; Gross DC Mol Plant Microbe Interact; 1995; 8(4):610-20. PubMed ID: 8589416 [TBL] [Abstract][Full Text] [Related]
18. [Activity of toxins produced by Pseudomonas syringae pv. syringae in model and cell membranes]. Gur'nev FA; Kaulin IuA; Tikhomirova AV; Wangspa R; Takemoto D; Malev VV; Shchagina LV Tsitologiia; 2002; 44(3):296-304. PubMed ID: 12094768 [TBL] [Abstract][Full Text] [Related]
19. Sphingolipids influence the sensitivity of lipid bilayers to fungicide, syringomycin E. Kaulin YA; Takemoto JY; Schagina LV; Ostroumova OS; Wangspa R; Teeter JH; Brand JG J Bioenerg Biomembr; 2005 Oct; 37(5):339-48. PubMed ID: 16341778 [TBL] [Abstract][Full Text] [Related]
20. Lipid-mediated regulation of pore-forming activity of syringomycin E by thyroid hormones and xanthene dyes. Efimova SS; Zakharova AA; Ismagilov AA; Schagina LV; Malev VV; Bashkirov PV; Ostroumova OS Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):691-699. PubMed ID: 29253504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]