These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9734604)

  • 21. Interaction of urinary crystals with renal epithelial cells in the pathogenesis of nephrolithiasis.
    Lieske JC; Toback FG
    Semin Nephrol; 1996 Sep; 16(5):458-73. PubMed ID: 8890401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The initial and subsequent inflammatory events during calcium oxalate lithiasis.
    Yuen JW; Gohel MD; Poon NW; Shum DK; Tam PC; Au DW
    Clin Chim Acta; 2010 Aug; 411(15-16):1018-26. PubMed ID: 20347754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach.
    Semangoen T; Sinchaikul S; Chen ST; Thongboonkerd V
    J Proteome Res; 2008 Jul; 7(7):2889-96. PubMed ID: 18459806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Renal tubular cell membranes inhibit growth but promote aggregation of calcium oxalate monohydrate crystals.
    Chutipongtanate S; Thongboonkerd V
    Chem Biol Interact; 2010 Dec; 188(3):421-6. PubMed ID: 20797392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells.
    Lieske JC; Norris R; Swift H; Toback FG
    Kidney Int; 1997 Nov; 52(5):1291-301. PubMed ID: 9350652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: Analysis of a potential antilithiatic mechanism.
    De Bellis R; Piacentini MP; Meli MA; Mattioli M; Menotta M; Mari M; Valentini L; Palomba L; Desideri D; Chiarantini L
    PLoS One; 2019; 14(6):e0218734. PubMed ID: 31238335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals.
    Farell G; Huang E; Kim SY; Horstkorte R; Lieske JC
    J Am Soc Nephrol; 2004 Dec; 15(12):3052-62. PubMed ID: 15579508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations in MDCK and LLC-PK1 cells exposed to oxalate and calcium oxalate monohydrate crystals.
    Hackett RL; Shevock PN; Khan SR
    Scanning Microsc; 1995 Jun; 9(2):587-96. PubMed ID: 8714751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells.
    Verkoelen CF; Van Der Boom BG; Romijn JC
    Kidney Int; 2000 Sep; 58(3):1045-54. PubMed ID: 10972669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine.
    Wang T; Thurgood LA; Grover PK; Ryall RL
    BJU Int; 2010 Dec; 106(11):1768-74. PubMed ID: 20230382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Architecture of mixed calcium oxalate dihydrate and monohydrate stones.
    Iwata H; Iio S; Nishio S; Takeuchi M
    Scanning Microsc; 1992 Mar; 6(1):231-7; discussion 237-8. PubMed ID: 1626242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells.
    Thurgood LA; Sørensen ES; Ryall RL
    Urol Res; 2012 Feb; 40(1):1-15. PubMed ID: 21932131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attachment sites for particles in the urinary tract.
    Verkoelen CF; Van Der Boom BG; Kok DJ; Schroder FH; Romijn JC
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S430-5. PubMed ID: 10541278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of anionic proteins in kidney stone formation: interaction between model anionic polypeptides and calcium oxalate crystals.
    Wesson JA; Worcester EM; Kleinman JG
    J Urol; 2000 Apr; 163(4):1343-8. PubMed ID: 10737541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study.
    Fasano JM; Khan SR
    Kidney Int; 2001 Jan; 59(1):169-78. PubMed ID: 11135069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals.
    Kumar V; Farell G; Deganello S; Lieske JC
    J Am Soc Nephrol; 2003 Feb; 14(2):289-97. PubMed ID: 12538728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules.
    Wesson JA; Worcester EM; Wiessner JH; Mandel NS; Kleinman JG
    Kidney Int; 1998 Apr; 53(4):952-7. PubMed ID: 9551403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-crystal interactions and kidney stone formation.
    Lieske JC; Deganello S; Toback FG
    Nephron; 1999; 81 Suppl 1():8-17. PubMed ID: 9873209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2D map of proteins from human renal stone matrix and evaluation of their effect on oxalate induced renal tubular epithelial cell injury.
    Aggarwal KP; Tandon S; Singh SK; Tandon C
    Int Braz J Urol; 2013; 39(1):128-36. PubMed ID: 23489505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibronectin as a potent inhibitor of calcium oxalate urolithiasis.
    Tsujihata M; Miyake O; Yoshimura K; Kakimoto KI; Takahara S; Okuyama A
    J Urol; 2000 Nov; 164(5):1718-23. PubMed ID: 11025758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.