BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9735151)

  • 1. DNA isolation from recalcitrant materials such as tree roots, bark, and forest soil for the detection of fungal pathogens by polymerase chain reaction.
    Bahnweg G; Schulze S; Möller EM; Rosenbrock H; Langebartels C; Sandermann H
    Anal Biochem; 1998 Aug; 262(1):79-82. PubMed ID: 9735151
    [No Abstract]   [Full Text] [Related]  

  • 2. Ectomycorrhizal fungi: exploring the mycelial frontier.
    Anderson IC; Cairney JW
    FEMS Microbiol Rev; 2007 Jul; 31(4):388-406. PubMed ID: 17466031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR.
    Castrillo LA; Thomsen L; Juneja P; Hajek AE
    Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pinyon rhizosphere, plant stress, and herbivory affect the abundance of microbial decomposers in soils.
    Kuske CR; Ticknor LO; Busch JD; Gehring CA; Whitham TG
    Microb Ecol; 2003 May; 45(4):340-52. PubMed ID: 12704562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.
    Zhang Z; Zhang J; Wang Y; Zheng X
    FEMS Microbiol Lett; 2005 Aug; 249(1):39-47. PubMed ID: 16019161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale forest girdling shows that current photosynthesis drives soil respiration.
    Högberg P; Nordgren A; Buchmann N; Taylor AF; Ekblad A; Högberg MN; Nyberg G; Ottosson-Löfvenius M; Read DJ
    Nature; 2001 Jun; 411(6839):789-92. PubMed ID: 11459055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal plant pathogen detection in plant and soil samples using DNA macroarrays.
    Lievens B; Justé A; Willems KA
    Methods Mol Biol; 2012; 835():491-507. PubMed ID: 22183673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Tuber melanosporum DNA in soil.
    Suz LM; Martín MP; Colinas C
    FEMS Microbiol Lett; 2006 Jan; 254(2):251-7. PubMed ID: 16445753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aurifilum, a new fungal genus in the Cryphonectriaceae from Terminalia species in Cameroon.
    Begoude AD; Gryzenhout M; Wingfield MJ; Roux J
    Antonie Van Leeuwenhoek; 2010 Oct; 98(3):263-78. PubMed ID: 20559872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensive fungal diversity in plant roots.
    Vandenkoornhuyse P; Baldauf SL; Leyval C; Straczek J; Young JP
    Science; 2002 Mar; 295(5562):2051. PubMed ID: 11896270
    [No Abstract]   [Full Text] [Related]  

  • 11. Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay.
    Herdina ; Neate S; Jabaji-Hare S; Ophel-Keller K
    FEMS Microbiol Ecol; 2004 Feb; 47(2):143-52. PubMed ID: 19712330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early detection of Biscogniauxia nummularia in symptomless European beech (Fagus sylvatica L.) by TaqMan quantitative real-time PCR.
    Luchi N; Capretti P; Vettraino AM; Vannini A; Pinzani P; Pazzagli M
    Lett Appl Microbiol; 2006 Jul; 43(1):33-8. PubMed ID: 16834718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi.
    Uroz S; Heinonsalo J
    FEMS Microbiol Ecol; 2008 Aug; 65(2):271-8. PubMed ID: 18400006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest.
    Yarwood SA; Myrold DD; Högberg MN
    FEMS Microbiol Ecol; 2009 Oct; 70(1):151-62. PubMed ID: 19656196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.
    Broz AK; Manter DK; Vivanco JM
    ISME J; 2007 Dec; 1(8):763-5. PubMed ID: 18059499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest.
    Chambers SM; Curlevski NJ; Cairney JW
    FEMS Microbiol Ecol; 2008 Aug; 65(2):263-70. PubMed ID: 18400005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal specificity bottlenecks during orchid germination and development.
    Bidartondo MI; Read DJ
    Mol Ecol; 2008 Aug; 17(16):3707-16. PubMed ID: 18627452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction.
    Okubara PA; Schroeder KL; Paulitz TC
    Phytopathology; 2008 Jul; 98(7):837-47. PubMed ID: 18943261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Discrimination of the soil yeast species Williopsis saturnus and Williopsis suaveolens by the polymerase chain reaction using nonspecific primers].
    Naumov GI; Tokareva NG; Naumova ES; Bab'eva IP
    Mikrobiologiia; 2000; 69(2):280-5. PubMed ID: 10776632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees.
    Guglielmo F; Bergemann SE; Gonthier P; Nicolotti G; Garbelotto M
    J Appl Microbiol; 2007 Nov; 103(5):1490-507. PubMed ID: 17953560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.