BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9735237)

  • 1. Immunohistochemical analysis of clinically transplanted muscles.
    Yoshimura K; Harii K; Asato H; Ueda K; Yamada A
    J Surg Res; 1998 Sep; 79(1):31-8. PubMed ID: 9735237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term adaptation of human microneurovascular muscle flaps to the paralyzed face: an immunohistochemical study.
    Kauhanen SC; Ylä-Kotola TM; Leivo IV; Tukiainen E; Asko-Seljavaara SL
    Microsurgery; 2006; 26(8):557-65. PubMed ID: 17066408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myosin heavy chain expression in skeletal muscle autografts under neural or aneural conditions.
    Yoshimura K; Kuzon WM; Harii K
    J Surg Res; 1998 Mar; 75(2):135-47. PubMed ID: 9655086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term delivery of FGF-6 changes the fiber type and fatigability of muscle reinnervated from embryonic neurons transplanted into adult rat peripheral nerve.
    Grumbles RM; Casella GT; Rudinsky MJ; Wood PM; Sesodia S; Bent M; Thomas CK
    J Neurosci Res; 2007 Jul; 85(9):1933-42. PubMed ID: 17492788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult human mylohyoid muscle fibers express slow-tonic, alpha-cardiac, and developmental myosin heavy-chain isoforms.
    Mu L; Su H; Wang J; Han Y; Sanders I
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Aug; 279(2):749-60. PubMed ID: 15278946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinnervation-induced alterations in rat skeletal muscle.
    Zhou Z; Cornelius CP; Eichner M; Bornemann A
    Neurobiol Dis; 2006 Sep; 23(3):595-602. PubMed ID: 16877003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A regenerative change during muscle adaptation to denervation in rats.
    Yoshimura K; Harii K
    J Surg Res; 1999 Feb; 81(2):139-46. PubMed ID: 9927532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MyoD protein accumulates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers.
    Koishi K; Zhang M; McLennan IS; Harris AJ
    Dev Dyn; 1995 Mar; 202(3):244-54. PubMed ID: 7780174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional modulation of satellite cells in long-term denervated human laryngeal muscle.
    Donghui C; Shicai C; Wei W; Fei L; Jianjun J; Gang C; Hongliang Z
    Laryngoscope; 2010 Feb; 120(2):353-8. PubMed ID: 19957344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histochemical and immunohistochemical study on muscle fibers in human extraocular muscle spindles.
    Wicke W; Wasicky R; Brugger PC; Kaminski S; Lukas JR
    Exp Eye Res; 2007 Apr; 84(4):670-9. PubMed ID: 17270173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in mass and performance in rabbit muscles after muscle damage with or without transplantation of primary satellite cells.
    Boubaker el Andalousi R; Daussin PA; Micallef JP; Roux C; Nougues J; Chammas M; Reyne Y; Bacou F
    Cell Transplant; 2002; 11(2):169-80. PubMed ID: 12099640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plasticity of denervated and reinnervated laryngeal muscle: focus on single-fiber myosin heavy-chain isoform expression.
    Wu YZ; Baker MJ; Marie JP; Crumley R; Caiozzo VJ
    Arch Otolaryngol Head Neck Surg; 2004 Sep; 130(9):1070-82. PubMed ID: 15381594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of slow myosin in rat muscles after neonatal nerve crush.
    Lowrie MB; Dhoot GK; Vrbova G
    Muscle Nerve; 1988 Oct; 11(10):1043-50. PubMed ID: 3185598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myogenesis in human denervated muscle biopsies.
    Doppler K; Mittelbronn M; Bornemann A
    Muscle Nerve; 2008 Jan; 37(1):79-83. PubMed ID: 17912750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle.
    Yuasa K; Nakamura A; Hijikata T; Takeda S
    BMC Musculoskelet Disord; 2008 Jan; 9():1. PubMed ID: 18182116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin heavy chain composition in normal and atrophic equine laryngeal muscle.
    Adreani CM; Li ZB; Lehar M; Southwood LL; Habecker PL; Flint PW; Parente EJ
    Vet Pathol; 2006 Nov; 43(6):881-9. PubMed ID: 17099144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber polymorphism in skeletal muscles of the American lobster, Homarus americanus: continuum between slow-twitch (S1) and slow-tonic (S2) fibers.
    Medler S; Lilley T; Mykles DL
    J Exp Biol; 2004 Jul; 207(Pt 16):2755-67. PubMed ID: 15235004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of denervation location on fiber type mix in self-reinnervated mouse soleus muscles.
    Bishop DL; Milton RL
    Exp Neurol; 1997 Sep; 147(1):151-8. PubMed ID: 9294412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin isoforms and muscle fiber characteristics in equine gluteus medius muscle.
    Serrano AL; Petrie JL; Rivero JL; Hermanson JW
    Anat Rec; 1996 Apr; 244(4):444-51. PubMed ID: 8694280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.