BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 9735242)

  • 1. Sustained nitric oxide exposure decreases soluble guanylate cyclase mRNA and enzyme activity in pulmonary artery smooth muscle.
    Scott WS; Nakayama DK
    J Surg Res; 1998 Sep; 79(1):66-70. PubMed ID: 9735242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli lipopolysaccharide downregulates soluble guanylate cyclase in pulmonary artery smooth muscle.
    Scott WS; Nakayama DK
    J Surg Res; 1998 Dec; 80(2):309-14. PubMed ID: 9878330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide-independent down-regulation of soluble guanylyl cyclase by bacterial endotoxin in astroglial cells.
    Baltrons MA; GarcĂ­a A
    J Neurochem; 1999 Nov; 73(5):2149-57. PubMed ID: 10537075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide decreases stability of mRNAs encoding soluble guanylate cyclase subunits in rat pulmonary artery smooth muscle cells.
    Filippov G; Bloch DB; Bloch KD
    J Clin Invest; 1997 Aug; 100(4):942-8. PubMed ID: 9259594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of endothelin receptors by nitric oxide in cultured rat vascular smooth muscle cells.
    Redmond EM; Cahill PA; Hodges R; Zhang S; Sitzmann JV
    J Cell Physiol; 1996 Mar; 166(3):469-79. PubMed ID: 8600150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desensitization of the soluble guanylyl cyclase/cGMP pathway by lipopolysaccharide in rat isolated pulmonary artery but not aorta.
    El-Awady MS; Smirnov SV; Watson ML
    Br J Pharmacol; 2008 Dec; 155(8):1164-73. PubMed ID: 18806822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue.
    Papapetropoulos A; Cziraki A; Rubin JW; Stone CD; Catravas JD
    J Cell Physiol; 1996 May; 167(2):213-21. PubMed ID: 8613461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential alterations in responsiveness in particulate and soluble guanylate cyclases in pregnant guinea pig myometrium.
    Buhimschi IA; San Martin-Clark O; Aguan K; Thompson LP; Weiner CP
    Am J Obstet Gynecol; 2000 Dec; 183(6):1512-9. PubMed ID: 11120520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs.
    Thelitz S; Bekker JM; Ovadia B; Stuart RB; Johengen MJ; Black SM; Fineman JR
    J Thorac Cardiovasc Surg; 2004 May; 127(5):1285-92. PubMed ID: 15115984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide donor SNAP induces apoptosis in smooth muscle cells through cGMP-independent mechanism.
    Nishio E; Fukushima K; Shiozaki M; Watanabe Y
    Biochem Biophys Res Commun; 1996 Apr; 221(1):163-8. PubMed ID: 8660329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide causes apoptosis in pulmonary vascular smooth muscle cells.
    Smith JD; McLean SD; Nakayama DK
    J Surg Res; 1998 Oct; 79(2):121-7. PubMed ID: 9758726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged relaxation consistent with persistent soluble guanylyl cyclase activation in canine pulmonary artery following brief treatment with nitric oxide donors.
    Kwak YL; Jones KA; Warner DO; Perkins WJ
    Life Sci; 2006 Oct; 79(21):2001-9. PubMed ID: 16854434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of soluble guanylate cyclase causes relaxation of corpus cavernosum tissue: synergism of nitric oxide and YC-1.
    Nakane M; Hsieh G; Miller LN; Chang R; Terranova MA; Moreland RB; Kolasa T; Brioni JD
    Int J Impot Res; 2002 Apr; 14(2):121-7. PubMed ID: 11979328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells.
    Cawley SM; Sawyer CL; Brunelle KF; van der Vliet A; Dostmann WR
    Cell Signal; 2007 May; 19(5):1023-33. PubMed ID: 17207606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide inhibits human and canine pulmonary vascular tone via a postjunctional, nonelectromechanical, cGMP-dependent pathway.
    Janssen LJ; Mardi K; Netherton S; Betti PA
    Can J Physiol Pharmacol; 1999 May; 77(5):320-9. PubMed ID: 10535681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells.
    Durante W; Kroll MH; Christodoulides N; Peyton KJ; Schafer AI
    Circ Res; 1997 Apr; 80(4):557-64. PubMed ID: 9118487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cyclic guanylate monophosphate in nitric oxide-induced injury to rat small intestinal epithelial cells.
    Tepperman BL; Abrahamson TD; Soper BD
    J Pharmacol Exp Ther; 1998 Mar; 284(3):929-33. PubMed ID: 9495851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of phosphodiesterase 3 in NO/cGMP-mediated antiinflammatory effects in vascular smooth muscle cells.
    Aizawa T; Wei H; Miano JM; Abe J; Berk BC; Yan C
    Circ Res; 2003 Sep; 93(5):406-13. PubMed ID: 12919948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide modulates Gi-protein expression and adenylyl cyclase signaling in vascular smooth muscle cells.
    Bassil M; Anand-Srivastava MB
    Free Radic Biol Med; 2006 Oct; 41(7):1162-73. PubMed ID: 16962941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic association of nitric oxide downstream signaling molecules with endothelial caveolin-1 in rat aorta.
    Linder AE; McCluskey LP; Cole KR; Lanning KM; Webb RC
    J Pharmacol Exp Ther; 2005 Jul; 314(1):9-15. PubMed ID: 15778264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.