These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 9735562)
1. Neural predictive controller for insulin delivery using the subcutaneous route. Trajanoski Z; Wach P IEEE Trans Biomed Eng; 1998 Sep; 45(9):1122-34. PubMed ID: 9735562 [TBL] [Abstract][Full Text] [Related]
2. Modeling, identification and nonlinear model predictive control of type I diabetic patient. Schlotthauer G; Gamero LG; Torres ME; Nicolini GA Med Eng Phys; 2006 Apr; 28(3):240-50. PubMed ID: 15964233 [TBL] [Abstract][Full Text] [Related]
3. Simulation studies on neural predictive control of glucose using the subcutaneous route. Trajanoski Z; Regittnig W; Wach P Comput Methods Programs Biomed; 1998 May; 56(2):133-9. PubMed ID: 9700428 [TBL] [Abstract][Full Text] [Related]
4. Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route. Campos-Delgado DU; Hernández-Ordoñez M; Femat R; Gordillo-Moscoso A IEEE Trans Biomed Eng; 2006 Nov; 53(11):2201-10. PubMed ID: 17073325 [TBL] [Abstract][Full Text] [Related]
5. Neural network modeling and control of type 1 diabetes mellitus. El-Jabali AK Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231 [TBL] [Abstract][Full Text] [Related]
6. An adaptive plasma glucose controller based on a nonlinear insulin/glucose model. Candas B; Radziuk J IEEE Trans Biomed Eng; 1994 Feb; 41(2):116-24. PubMed ID: 8026845 [TBL] [Abstract][Full Text] [Related]
7. On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes. Schaller HC; Schaupp L; Bodenlenz M; Wilinska ME; Chassin LJ; Wach P; Vering T; Hovorka R; Pieber TR Diabet Med; 2006 Jan; 23(1):90-3. PubMed ID: 16409572 [TBL] [Abstract][Full Text] [Related]
8. A simulation study of an inverse controller for closed- and semiclosed-loop control in type 1 diabetes. Rodríguez-Herrero A; Pérez-Gandía C; Rigla M; de Leiva A; Gómez EJ; Hernando ME Diabetes Technol Ther; 2010 Feb; 12(2):95-104. PubMed ID: 20105038 [TBL] [Abstract][Full Text] [Related]
9. An insulin infusion advisory system based on autotuning nonlinear model-predictive control. Zarkogianni K; Vazeou A; Mougiakakou SG; Prountzou A; Nikita KS IEEE Trans Biomed Eng; 2011 Sep; 58(9):2467-77. PubMed ID: 21622071 [TBL] [Abstract][Full Text] [Related]
10. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Fernandez de Canete J; Gonzalez-Perez S; Ramos-Diaz JC Comput Methods Programs Biomed; 2012 Apr; 106(1):55-66. PubMed ID: 22178070 [TBL] [Abstract][Full Text] [Related]
11. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients. Ibbini M J Med Eng Technol; 2006; 30(2):83-92. PubMed ID: 16531347 [TBL] [Abstract][Full Text] [Related]
12. Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. Yoo SJ; Park JB IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1316-23. PubMed ID: 19342350 [TBL] [Abstract][Full Text] [Related]
13. A semiclosed-loop optimal control system for blood glucose level in diabetics. Ibbini MS; Masadeh MA; Amer MM J Med Eng Technol; 2004; 28(5):189-96. PubMed ID: 15370997 [TBL] [Abstract][Full Text] [Related]
14. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks. Yang Q; Vance JB; Jagannathan S IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):994-1001. PubMed ID: 18632390 [TBL] [Abstract][Full Text] [Related]
15. An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study. Padhi R; Bhardhwaj JR Comput Methods Programs Biomed; 2009 Jun; 94(3):207-22. PubMed ID: 19215995 [TBL] [Abstract][Full Text] [Related]
16. Diabetes mellitus modeling and short-term prediction based on blood glucose measurements. Ståhl F; Johansson R Math Biosci; 2009 Feb; 217(2):101-17. PubMed ID: 19022264 [TBL] [Abstract][Full Text] [Related]
17. An improved PID switching control strategy for type 1 diabetes. Marchetti G; Barolo M; Jovanovic L; Zisser H; Seborg DE IEEE Trans Biomed Eng; 2008 Mar; 55(3):857-65. PubMed ID: 18334377 [TBL] [Abstract][Full Text] [Related]
18. Feedforward-feedback multiple predictive controllers for glucose regulation in type 1 diabetes. Abu-Rmileh A; Garcia-Gabin W Comput Methods Programs Biomed; 2010 Jul; 99(1):113-23. PubMed ID: 20430467 [TBL] [Abstract][Full Text] [Related]
19. Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Weinzimer SA; Steil GM; Swan KL; Dziura J; Kurtz N; Tamborlane WV Diabetes Care; 2008 May; 31(5):934-9. PubMed ID: 18252903 [TBL] [Abstract][Full Text] [Related]
20. A gain-scheduling model predictive controller for blood glucose control in type 1 diabetes. Abu-Rmileh A; Garcia-Gabin W IEEE Trans Biomed Eng; 2010 Oct; 57(10):2478-84. PubMed ID: 19846371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]