BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9736268)

  • 1. Adaptation of Madin-Darby canine kidney cells to hypertonic medium: an electron microprobe analysis.
    Borgmann S; Dörge A
    Kidney Int Suppl; 1998 Sep; 67():S133-5. PubMed ID: 9736268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypertonic activation of the renal betaine/GABA transporter is microtubule dependent.
    Basham JC; Chabrerie A; Kempson SA
    Kidney Int; 2001 Jun; 59(6):2182-91. PubMed ID: 11380820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonicity affects heat shock protein 27 and F-actin localization in Madin-Darby canine kidney cells.
    Neuhofer W; Müller E; Burger-Kentischer A; Beck FX
    Kidney Int Suppl; 1998 Sep; 67():S165-7. PubMed ID: 9736278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurine behaves as an osmolyte in Madin-Darby canine kidney cells. Protection by polarized, regulated transport of taurine.
    Uchida S; Nakanishi T; Kwon HM; Preston AS; Handler JS
    J Clin Invest; 1991 Aug; 88(2):656-62. PubMed ID: 1864974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy.
    Lúcio AD; Santos RA; Mesquita ON
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041906. PubMed ID: 14682972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertonic induction of the cell adhesion molecule beta 1-integrin in MDCK cells.
    Sheikh-Hamad D; Suki WN; Zhao W
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C902-8. PubMed ID: 9316411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of heat shock protein 27 and 70 in renal papillary collecting duct and interstitial cells - implications for urea resistance.
    Neuhofer W; Fraek ML; Ouyang N; Beck FX
    J Physiol; 2005 May; 564(Pt 3):715-22. PubMed ID: 15718262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperosmolarity-induced up-regulation of claudin-4 mediated by NADPH oxidase-dependent H2O2 production and Sp1/c-Jun cooperation.
    Ikari A; Atomi K; Yamazaki Y; Sakai H; Hayashi H; Yamaguchi M; Sugatani J
    Biochim Biophys Acta; 2013 Dec; 1833(12):2617-2627. PubMed ID: 23816505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of ion content and cell volume in isolated rat renal IMCD cells under hypertonic conditions.
    Grunewald JM; Grunewald RW; Kinne RK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F13-9. PubMed ID: 8048552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture.
    Verkoelen CF; van der Boom BG; Kok DJ; Houtsmuller AB; Visser P; Schröder FH; Romijn JC
    Kidney Int; 1999 Apr; 55(4):1426-33. PubMed ID: 10201007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD9 antigen mRNA is induced by hypertonicity in two renal epithelial cell lines.
    Sheikh-Hamad D; Ferraris JD; Dragolovich J; Preuss HG; Burg MB; García-Pérez A
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C253-8. PubMed ID: 8772451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of IMCD3 cells to hypertonic challenges as analyzed by electron microscopy.
    Pihakaski-Maunsbach K; Nonaka S; Vorum H; Maunsbach AB
    J Electron Microsc (Tokyo); 2010; 59(6):481-94. PubMed ID: 20670932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmotic regulation of amino acids and system A transport in Madin-Darby canine kidney cells.
    Horio M; Yamauchi A; Moriyama T; Imai E; Orita Y
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C804-9. PubMed ID: 9124514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium.
    Bagnasco SM; Montrose MH; Handler JS
    Am J Physiol; 1993 May; 264(5 Pt 1):C1165-70. PubMed ID: 8498477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inner-medullary organic osmolytes and inorganic electrolytes in K depletion.
    Beck FX; Müller E; Fraek ML; Dörge A; Thurau K
    Pflugers Arch; 2000 Feb; 439(4):471-6. PubMed ID: 10678744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apical-to-basolateral transepithelial transport of Ochratoxin A by two subtypes of Madin-Darby canine kidney cells.
    Schwerdt G; Gekle M; Freudinger R; Mildenberger S; Silbernagl S
    Biochim Biophys Acta; 1997 Mar; 1324(2):191-9. PubMed ID: 9092706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertonicity in fused Madin-Darby canine kidney cells: transient rise in NaHCO3 followed by sustained KCl accumulation.
    Wojnowski L; Oberleithner H
    Pflugers Arch; 1991 Aug; 419(1):43-50. PubMed ID: 1658730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of sulfoglycolipids in hyperosmosis-resistant clones derived from the renal epithelial cell line MDCK (Madin-Darby canine kidney cell).
    Niimura Y; Ishizuka I
    Comp Biochem Physiol B; 1991; 100(3):535-41. PubMed ID: 1814680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostaglandin E2 stimulates sodium reabsorption in MDCK C7 cells, a renal collecting duct principal cell model.
    Wegmann M; Nüsing RM
    Prostaglandins Leukot Essent Fatty Acids; 2003 Nov; 69(5):315-22. PubMed ID: 14580365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmoregulation of betaine transport in mammalian renal medullary cells.
    Nakanishi T; Turner RJ; Burg MB
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F1061-7. PubMed ID: 2330972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.