BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9736268)

  • 21. Hyperosmolality regulates endothelin release by Madin-Darby canine kidney cells.
    Schramek H; Gstraunthaler G; Willinger CC; Pfaller W
    J Am Soc Nephrol; 1993 Aug; 4(2):206-13. PubMed ID: 8400084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EGF receptor signaling is involved in expression of osmoprotective TonEBP target gene aldose reductase under hypertonic conditions.
    Küper C; Steinert D; Fraek ML; Beck FX; Neuhofer W
    Am J Physiol Renal Physiol; 2009 May; 296(5):F1100-8. PubMed ID: 19225051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture.
    Roy G; Sauvé R
    J Membr Biol; 1987; 100(1):83-96. PubMed ID: 3430568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.
    Lassance-Soares RM; Cheng J; Krasnov K; Cebotaru L; Cutting GR; Souza-Menezes J; Morales MM; Guggino WB
    Cell Physiol Biochem; 2010; 26(4-5):577-86. PubMed ID: 21063095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Medium tonicity regulates expression of the Na(+)- and Cl(-)-dependent betaine transporter in Madin-Darby canine kidney cells by increasing transcription of the transporter gene.
    Uchida S; Yamauchi A; Preston AS; Kwon HM; Handler JS
    J Clin Invest; 1993 Apr; 91(4):1604-7. PubMed ID: 8473504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of stanniocalcin in MDCK cells by hypertonicity and extracellular calcium.
    Sheikh-Hamad D; Rouse D; Yang Y
    Am J Physiol Renal Physiol; 2000 Mar; 278(3):F417-24. PubMed ID: 10710546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion content and cell volume in isolated collecting duct cells: effect of hypotonicity.
    Grunewald JM; Grunewald RW; Kinne RK
    Kidney Int; 1993 Sep; 44(3):509-17. PubMed ID: 8231023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity.
    Desforges B; Savarin P; Bounedjah O; Delga S; Hamon L; Curmi PA; Pastré D
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C705-16. PubMed ID: 21677260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osmoregulatory fluxes of myo-inositol and betaine in renal cells.
    Nakanishi T; Burg MB
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C964-70. PubMed ID: 2596590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relative roles of external taurine concentration and medium osmolality in the regulation of taurine transport in LLC-PK1 and MDCK cells.
    Jones DP; Miller LA; Chesney RW
    Pediatr Res; 1995 Feb; 37(2):227-32. PubMed ID: 7537366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rat renal papillary tissue explants survive and produce epithelial monolayers in culture media made hyperosmotic with sodium chloride and urea.
    Woolverton WS; Githens S; O'Dell-Smith R; Bartell CK
    J Exp Zool; 1990 Nov; 256(2):189-99. PubMed ID: 2280248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polarity of taurine transport in cultured renal epithelial cell lines: LLC-PK1 and MDCK.
    Jones DP; Miller LA; Chesney RW
    Am J Physiol; 1993 Jul; 265(1 Pt 2):F137-45. PubMed ID: 8342611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic mechanisms of regulatory volume increase (RVI) in the human hepatoma cell-line HepG2.
    Wehner F; Lawonn P; Tinel H
    Pflugers Arch; 2002 Mar; 443(5-6):779-90. PubMed ID: 11889576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Video-imaging microfluorometry identifies alpha- and beta-like cell types in Madin-Darby canine kidney monolayers.
    Ebner S; Marin-Grez M
    Kidney Int Suppl; 1998 Sep; 67():S139-42. PubMed ID: 9736270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic hyperosmolarity mediates constitutive expression of molecular chaperones and resistance to injury.
    Santos BC; Pullman JM; Chevaile A; Welch WJ; Gullans SR
    Am J Physiol Renal Physiol; 2003 Mar; 284(3):F564-74. PubMed ID: 12409277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myo-inositol uptake by rat cultured inner medullary collecting tubule cells: effect of osmolality.
    Veis JH; Molitoris BA; Teitelbaum I; Mansour JA; Berl T
    Am J Physiol; 1991 May; 260(5 Pt 2):F619-25. PubMed ID: 2035649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypertonicity-induced accumulation of organic osmolytes in papillary interstitial cells.
    Burger-Kentischer A; Müller E; März J; Fraek ML; Thurau K; Beck FX
    Kidney Int; 1999 Apr; 55(4):1417-25. PubMed ID: 10201006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subtypes of Madin-Darby canine kidney (MDCK) cells defined by immunocytochemistry: further evidence for properties of renal collecting duct cells.
    Devuyst O; Beauwens R; Denef JF; Crabbé J; Abramow M
    Cell Tissue Res; 1994 Aug; 277(2):231-7. PubMed ID: 8082117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apoptosis induced by hypertonicity in Madin Darley canine kidney cells: protective effect of betaine.
    Horio M; Ito A; Matsuoka Y; Moriyama T; Orita Y; Takenaka M; Imai E
    Nephrol Dial Transplant; 2001 Mar; 16(3):483-90. PubMed ID: 11239020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphatase toward MAP kinase is regulated by osmolarity in Madin-Darby canine kidney (MDCK) cells.
    Itoh T; Yamauchi A; Imai E; Ueda N; Kamada T
    FEBS Lett; 1995 Oct; 373(2):123-6. PubMed ID: 7589449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.