These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 9736469)

  • 1. Magnetic stimulation of visual cortex: factors influencing the perception of phosphenes.
    Ray PG; Meador KJ; Epstein CM; Loring DW; Day LJ
    J Clin Neurophysiol; 1998 Jul; 15(4):351-7. PubMed ID: 9736469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of phosphene thresholds by transcranial direct current stimulation in man.
    Antal A; Kincses TZ; Nitsche MA; Paulus W
    Exp Brain Res; 2003 Jun; 150(3):375-8. PubMed ID: 12698316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the primary visual cortex using short-interval paired-pulse transcranial magnetic stimulation (TMS).
    Sparing R; Dambeck N; Stock K; Meister IG; Huetter D; Boroojerdi B
    Neurosci Lett; 2005 Jul; 382(3):312-6. PubMed ID: 15925110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphene thresholds evoked with single and double TMS pulses.
    Kammer T; Baumann LW
    Clin Neurophysiol; 2010 Mar; 121(3):376-9. PubMed ID: 20079689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.
    Siniatchkin M; Groppa S; Jerosch B; Muhle H; Kurth C; Shepherd AJ; Siebner H; Stephani U
    Brain; 2007 Jan; 130(Pt 1):78-87. PubMed ID: 17121743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial magnetic stimulation in the visual system. I. The psychophysics of visual suppression.
    Kammer T; Puls K; Strasburger H; Hill NJ; Wichmann FA
    Exp Brain Res; 2005 Jan; 160(1):118-28. PubMed ID: 15368086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial magnetic stimulation reveals high test-retest reliability for phosphenes but not for suppression of visual perception.
    Siniatchkin M; Schlicke C; Stephani U
    Clin Neurophysiol; 2011 Dec; 122(12):2475-81. PubMed ID: 21641863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced excitability of the human visual cortex induced by short-term light deprivation.
    Boroojerdi B; Bushara KO; Corwell B; Immisch I; Battaglia F; Muellbacher W; Cohen LG
    Cereb Cortex; 2000 May; 10(5):529-34. PubMed ID: 10847602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of the human visual cortex using image-guided transcranial magnetic stimulation.
    Fernandez E; Alfaro A; Tormos JM; Climent R; Martínez M; Vilanova H; Walsh V; Pascual-Leone A
    Brain Res Brain Res Protoc; 2002 Oct; 10(2):115-24. PubMed ID: 12431711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The site of saccadic suppression.
    Thilo KV; Santoro L; Walsh V; Blakemore C
    Nat Neurosci; 2004 Jan; 7(1):13-4. PubMed ID: 14699413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic stimuli applied over motor and visual cortex: influence of coil position and field polarity on motor responses, phosphenes, and eye movements.
    Meyer BU; Diehl R; Steinmetz H; Britton TC; Benecke R
    Electroencephalogr Clin Neurophysiol Suppl; 1991; 43():121-34. PubMed ID: 1773752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phosphenes elicited by subcortical stimulation in man].
    Taira T; Hitchcock E
    No Shinkei Geka; 1991 Nov; 19(11):1025-31. PubMed ID: 1762652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.