These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 9736664)

  • 1. Relationship between fos production and classical fear conditioning: effects of novelty, latent inhibition, and unconditioned stimulus preexposure.
    Radulovic J; Kammermeier J; Spiess J
    J Neurosci; 1998 Sep; 18(18):7452-61. PubMed ID: 9736664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of the Fos protein after contextual fear conditioning of C57BL/6N mice.
    Milanovic S; Radulovic J; Laban O; Stiedl O; Henn F; Spiess J
    Brain Res; 1998 Feb; 784(1-2):37-47. PubMed ID: 9518543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habituation and extinction of fear recruit overlapping forebrain structures.
    Furlong TM; Richardson R; McNally GP
    Neurobiol Learn Mem; 2016 Feb; 128():7-16. PubMed ID: 26690954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of the immediate early genes c-Fos, Arc, Egr-1, and Npas4 during long-term memory formation in the context preexposure facilitation effect (CPFE).
    Heroux NA; Osborne BF; Miller LA; Kawan M; Buban KN; Rosen JB; Stanton ME
    Neurobiol Learn Mem; 2018 Jan; 147():128-138. PubMed ID: 29222058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of massed and distributed context preexposure on contextual fear and Egr-1 expression in the basolateral amygdala.
    Perez-Villalba A; Mackintosh NJ; Canales JJ
    Physiol Behav; 2008 Jan; 93(1-2):206-14. PubMed ID: 17900634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning.
    Chau LS; Prakapenka A; Fleming SA; Davis AS; Galvez R
    Neurobiol Learn Mem; 2013 Nov; 106():127-33. PubMed ID: 23891993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear.
    Acquas E; Wilson C; Fibiger HC
    J Neurosci; 1996 May; 16(9):3089-96. PubMed ID: 8622138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli.
    Blair HT; Sotres-Bayon F; Moita MA; Ledoux JE
    Neuroscience; 2005; 133(2):561-9. PubMed ID: 15878802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiation of amygdaloid and hippocampal auditory-evoked potentials in a discriminatory fear-conditioning task in mice as a function of tone pattern and context.
    Tang J; Wagner S; Schachner M; Dityatev A; Wotjak CT
    Eur J Neurosci; 2003 Aug; 18(3):639-50. PubMed ID: 12911760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylated cAMP response element binding protein in the mouse brain after fear conditioning: relationship to Fos production.
    Stanciu M; Radulovic J; Spiess J
    Brain Res Mol Brain Res; 2001 Oct; 94(1-2):15-24. PubMed ID: 11597761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.
    Phillips RG; LeDoux JE
    Behav Neurosci; 1992 Apr; 106(2):274-85. PubMed ID: 1590953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amygdala c-Fos induction corresponds to unconditioned and conditioned aversive stimuli but not to freezing.
    Holahan MR; White NM
    Behav Brain Res; 2004 Jun; 152(1):109-20. PubMed ID: 15135974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory specific fear conditioning results in increased levels of synaptophysin in the basolateral amygdala.
    Nithianantharajah J; Murphy M
    Neurobiol Learn Mem; 2008 Jul; 90(1):36-43. PubMed ID: 18226933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioural and cardiovascular responses during latent inhibition of conditioned fear: measurement by telemetry and conditioned freezing.
    Zhang WN; Murphy CA; Feldon J
    Behav Brain Res; 2004 Sep; 154(1):199-209. PubMed ID: 15302126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradoxical facilitatory effect of fornix lesions on acquisition of contextual fear conditioning in mice.
    Laurent-Demir C; Jaffard R
    Behav Brain Res; 2000 Jan; 107(1-2):85-91. PubMed ID: 10628732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissociated roles for the lateral and medial septum in elemental and contextual fear conditioning.
    Calandreau L; Jaffard R; Desmedt A
    Learn Mem; 2007 Jun; 14(6):422-9. PubMed ID: 17554087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice.
    Anagnostaras SG; Josselyn SA; Frankland PW; Silva AJ
    Learn Mem; 2000 Jan; 7(1):58-72. PubMed ID: 10706603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruptive effects of posttraining perirhinal cortex lesions on conditioned fear: contributions of contextual cues.
    Corodimas KP; LeDoux JE
    Behav Neurosci; 1995 Aug; 109(4):613-9. PubMed ID: 7576205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative metabolic profiling of posterior parietal cortex, amygdala, and hippocampus in conditioned fear memory.
    Jeon Y; Lim Y; Yeom J; Kim EK
    Mol Brain; 2021 Oct; 14(1):153. PubMed ID: 34615530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.