These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 9736667)

  • 1. Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology.
    Rüsch A; Lysakowski A; Eatock RA
    J Neurosci; 1998 Sep; 18(18):7487-501. PubMed ID: 9736667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A delayed rectifier conductance in type I hair cells of the mouse utricle.
    Rüsch A; Eatock RA
    J Neurophysiol; 1996 Aug; 76(2):995-1004. PubMed ID: 8871214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.
    Meredith FL; Rennie KJ
    Hear Res; 2016 Aug; 338():40-51. PubMed ID: 26836968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear.
    Géléoc GS; Risner JR; Holt JR
    J Neurosci; 2004 Dec; 24(49):11148-59. PubMed ID: 15590931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional expression of exogenous proteins in mammalian sensory hair cells infected with adenoviral vectors.
    Holt JR; Johns DC; Wang S; Chen ZY; Dunn RJ; Marban E; Corey DP
    J Neurophysiol; 1999 Apr; 81(4):1881-8. PubMed ID: 10200223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of hair cell phenotype and calyx nerve terminals in the neonatal mouse utricle.
    Warchol ME; Massoodnia R; Pujol R; Cox BC; Stone JS
    J Comp Neurol; 2019 Aug; 527(11):1913-1928. PubMed ID: 30724338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle.
    Lennan GW; Steinacker A; Lehouelleur J; Sans A
    Pflugers Arch; 1999 Jun; 438(1):40-6. PubMed ID: 10370085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (Rana esculenta).
    Jørgensen F; Kroese AB
    Acta Physiol Scand; 2005 Dec; 185(4):271-90. PubMed ID: 16266369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch clamp recordings of hair cells isolated from zebrafish auditory and vestibular end organs.
    Haden M; Einarsson R; Yazejian B
    Neuroscience; 2013 Sep; 248():79-87. PubMed ID: 23747350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development.
    Chabbert C; Mechaly I; Sieso V; Giraud P; Brugeaud A; Lehouelleur J; Couraud F; Valmier J; Sans A
    J Physiol; 2003 Nov; 553(Pt 1):113-23. PubMed ID: 12963806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear.
    Levin ME; Holt JR
    J Neurophysiol; 2012 Jul; 108(1):175-86. PubMed ID: 22496522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hair cells in mammalian utricles.
    Eatock RA; Rüsch A; Lysakowski A; Saeki M
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):172-81. PubMed ID: 9743073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane properties of chick semicircular canal hair cells in situ during embryonic development.
    Masetto S; Perin P; Malusà A; Zucca G; Valli P
    J Neurophysiol; 2000 May; 83(5):2740-56. PubMed ID: 10805673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells.
    Marcotti W; Johnson SL; Holley MC; Kros CJ
    J Physiol; 2003 Apr; 548(Pt 2):383-400. PubMed ID: 12588897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus processing by type II hair cells in the mouse utricle.
    Holt JR; Vollrath MA; Eatock RA
    Ann N Y Acad Sci; 1999 May; 871():15-26. PubMed ID: 10372060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle.
    Hurley KM; Gaboyard S; Zhong M; Price SD; Wooltorton JR; Lysakowski A; Eatock RA
    J Neurosci; 2006 Oct; 26(40):10253-69. PubMed ID: 17021181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of voltage-gated and calcium-activated potassium currents in toadfish saccular hair cells.
    Steinacker A; Romero A
    Brain Res; 1991 Aug; 556(1):22-32. PubMed ID: 1933352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental changes in the physiology of hair cells.
    Eatock RA; Rüsch A
    Semin Cell Dev Biol; 1997 Jun; 8(3):265-275. PubMed ID: 10024489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent and resurgent Na
    Meredith FL; Rennie KJ
    J Neurophysiol; 2020 Aug; 124(2):510-524. PubMed ID: 32667253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.