These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9736690)

  • 1. The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis.
    Bianchet MA; Hullihen J; Pedersen PL; Amzel LM
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11065-70. PubMed ID: 9736690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding ATP synthesis: structure and mechanism of the F1-ATPase (Review).
    Leyva JA; Bianchet MA; Amzel LM
    Mol Membr Biol; 2003; 20(1):27-33. PubMed ID: 12745923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex.
    Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J
    Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat liver ATP synthase. Relationship of the unique substructure of the F1 moiety to its nucleotide binding properties, enzymatic states, and crystalline form.
    Pedersen PL; Hullihen J; Bianchet M; Amzel LM; Lebowitz MS
    J Biol Chem; 1995 Jan; 270(4):1775-84. PubMed ID: 7829514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP synthase: a tentative structural model.
    Engelbrecht S; Junge W
    FEBS Lett; 1997 Sep; 414(3):485-91. PubMed ID: 9323021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate.
    Ko YH; Hong S; Pedersen PL
    J Biol Chem; 1999 Oct; 274(41):28853-6. PubMed ID: 10506126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine F1-ATPase covalently inhibited with 4-chloro-7-nitrobenzofurazan: the structure provides further support for a rotary catalytic mechanism.
    Orriss GL; Leslie AG; Braig K; Walker JE
    Structure; 1998 Jul; 6(7):831-7. PubMed ID: 9687365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria.
    Rees DM; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11139-43. PubMed ID: 22733764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notes on the mechanism of ATP synthesis.
    Bianchet MA; Pedersen PL; Amzel LM
    J Bioenerg Biomembr; 2000 Oct; 32(5):517-21. PubMed ID: 15254387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Important subunit interactions in the chloroplast ATP synthase.
    Richter ML; Hein R; Huchzermeyer B
    Biochim Biophys Acta; 2000 May; 1458(2-3):326-42. PubMed ID: 10838048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The participation of metals in the mechanism of the F(1)-ATPase.
    Frasch WD
    Biochim Biophys Acta; 2000 May; 1458(2-3):310-25. PubMed ID: 10838047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of the nucleotide-free alpha 3 beta 3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer.
    Shirakihara Y; Leslie AG; Abrahams JP; Walker JE; Ueda T; Sekimoto Y; Kambara M; Saika K; Kagawa Y; Yoshida M
    Structure; 1997 Jun; 5(6):825-36. PubMed ID: 9261073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria.
    Abrahams JP; Leslie AG; Lutter R; Walker JE
    Nature; 1994 Aug; 370(6491):621-8. PubMed ID: 8065448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rotary binding change mechanism of ATP synthases.
    Cross RL
    Biochim Biophys Acta; 2000 May; 1458(2-3):270-5. PubMed ID: 10838043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin.
    Abrahams JP; Buchanan SK; Van Raaij MJ; Fearnley IM; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9420-4. PubMed ID: 8790345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution.
    Bowler MW; Montgomery MG; Leslie AG; Walker JE
    J Biol Chem; 2007 May; 282(19):14238-42. PubMed ID: 17350959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK; Girvin ME
    Nature; 1999 Nov; 402(6759):263-8. PubMed ID: 10580496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic site forms and controls in ATP synthase catalysis.
    Boyer PD
    Biochim Biophys Acta; 2000 May; 1458(2-3):252-62. PubMed ID: 10838041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
    Ferguson SA; Cook GM; Montgomery MG; Leslie AG; Walker JE
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10860-5. PubMed ID: 27621435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.