These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 9737350)
1. Intracortical remodeling in adult rat long bones after fatigue loading. Bentolila V; Boyce TM; Fyhrie DP; Drumb R; Skerry TM; Schaffler MB Bone; 1998 Sep; 23(3):275-81. PubMed ID: 9737350 [TBL] [Abstract][Full Text] [Related]
2. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Verborgt O; Gibson GJ; Schaffler MB J Bone Miner Res; 2000 Jan; 15(1):60-7. PubMed ID: 10646115 [TBL] [Abstract][Full Text] [Related]
3. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading. Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298 [TBL] [Abstract][Full Text] [Related]
4. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae. Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769 [TBL] [Abstract][Full Text] [Related]
5. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone. Liu X; Li W; Cai J; Yan Z; Shao X; Xie K; Guo XE; Luo E; Jing D FASEB J; 2020 Feb; 34(2):2579-2594. PubMed ID: 31908007 [TBL] [Abstract][Full Text] [Related]
7. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density. Hsieh YF; Silva MJ J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665 [TBL] [Abstract][Full Text] [Related]
8. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Herman BC; Cardoso L; Majeska RJ; Jepsen KJ; Schaffler MB Bone; 2010 Oct; 47(4):766-72. PubMed ID: 20633708 [TBL] [Abstract][Full Text] [Related]
9. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow. Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467 [TBL] [Abstract][Full Text] [Related]
10. Degradation of bone structural properties by accumulation and coalescence of microcracks. Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353 [TBL] [Abstract][Full Text] [Related]
11. Noninvasive fatigue fracture model of the rat ulna. Tami AE; Nasser P; Schaffler MB; Knothe Tate ML J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214 [TBL] [Abstract][Full Text] [Related]
12. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. Cardoso L; Herman BC; Verborgt O; Laudier D; Majeska RJ; Schaffler MB J Bone Miner Res; 2009 Apr; 24(4):597-605. PubMed ID: 19049324 [TBL] [Abstract][Full Text] [Related]
13. Development of an in vivo bone fatigue damage model using axial compression of the rabbit forelimb. Buettmann EG; Silva MJ J Biomech; 2016 Oct; 49(14):3564-3569. PubMed ID: 27596952 [TBL] [Abstract][Full Text] [Related]
14. Increased intracortical remodeling following fatigue damage. Mori S; Burr DB Bone; 1993; 14(2):103-9. PubMed ID: 8334026 [TBL] [Abstract][Full Text] [Related]
15. Bone remodeling in response to in vivo fatigue microdamage. Burr DB; Martin RB; Schaffler MB; Radin EL J Biomech; 1985; 18(3):189-200. PubMed ID: 3997903 [TBL] [Abstract][Full Text] [Related]
16. Structural and mechanical repair of diffuse damage in cortical bone in vivo. Seref-Ferlengez Z; Basta-Pljakic J; Kennedy OD; Philemon CJ; Schaffler MB J Bone Miner Res; 2014 Dec; 29(12):2537-44. PubMed ID: 25042459 [TBL] [Abstract][Full Text] [Related]
17. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats. Barrett JG; Sample SJ; McCarthy J; Kalscheur VL; Muir P; Prokuski L J Orthop Res; 2007 Aug; 25(8):1070-7. PubMed ID: 17444501 [TBL] [Abstract][Full Text] [Related]
18. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Noble BS; Peet N; Stevens HY; Brabbs A; Mosley JR; Reilly GC; Reeve J; Skerry TM; Lanyon LE Am J Physiol Cell Physiol; 2003 Apr; 284(4):C934-43. PubMed ID: 12477665 [TBL] [Abstract][Full Text] [Related]
19. An animal trial to study damage and repair in ovariectomized rabbits. Coates BA; Silva MJ J Biomech; 2020 Jul; 108():109866. PubMed ID: 32635993 [TBL] [Abstract][Full Text] [Related]
20. Bone adaptation to load: microdamage as a stimulus for bone remodelling. Lee TC; Staines A; Taylor D J Anat; 2002 Dec; 201(6):437-46. PubMed ID: 12489756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]