These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 9737350)

  • 21. Effect of athletic fatigue damage and the associated bone targeted remodeling in the rat ulna.
    Hao L; Rui-Xin L; Biao H; Bin Z; Bao-Hui H; Ying-Jie L; Xi-Zheng Z
    Biomed Eng Online; 2017 Aug; 16(1):99. PubMed ID: 28789651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis.
    Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV
    J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microdamage repair and remodeling requires mechanical loading.
    Waldorff EI; Christenson KB; Cooney LA; Goldstein SA
    J Bone Miner Res; 2010 Apr; 25(4):734-45. PubMed ID: 19821772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations.
    Kennedy OD; Herman BC; Laudier DM; Majeska RJ; Sun HB; Schaffler MB
    Bone; 2012 May; 50(5):1115-22. PubMed ID: 22342796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo.
    Hillam RA; Skerry TM
    J Bone Miner Res; 1995 May; 10(5):683-9. PubMed ID: 7639102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an in vivo rabbit ulnar loading model.
    Baumann AP; Aref MW; Turnbull TL; Robling AG; Niebur GL; Allen MR; Roeder RK
    Bone; 2015 Jun; 75():55-61. PubMed ID: 25683214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading.
    Sample SJ; Hao Z; Wilson AP; Muir P
    PLoS One; 2011; 6(6):e20386. PubMed ID: 21694766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pannexin-1 and P2X7-Receptor Are Required for Apoptotic Osteocytes in Fatigued Bone to Trigger RANKL Production in Neighboring Bystander Osteocytes.
    Cheung WY; Fritton JC; Morgan SA; Seref-Ferlengez Z; Basta-Pljakic J; Thi MM; Suadicani SO; Spray DC; Majeska RJ; Schaffler MB
    J Bone Miner Res; 2016 Apr; 31(4):890-9. PubMed ID: 26553756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observations of microdamage around osteocyte lacunae in bone.
    Reilly GC
    J Biomech; 2000 Sep; 33(9):1131-4. PubMed ID: 10854886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Repair of microdamage in osteonal cortical bone adjacent to bone screw.
    Wang L; Ye T; Deng L; Shao J; Qi J; Zhou Q; Wei L; Qiu S
    PLoS One; 2014; 9(2):e89343. PubMed ID: 24586702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading.
    Follet H; Li J; Phipps RJ; Hui S; Condon K; Burr DB
    Bone; 2007 Apr; 40(4):1172-7. PubMed ID: 17240209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aging and matrix microdamage accumulation in human compact bone.
    Schaffler MB; Choi K; Milgrom C
    Bone; 1995 Dec; 17(6):521-25. PubMed ID: 8835305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation?
    Verborgt O; Tatton NA; Majeska RJ; Schaffler MB
    J Bone Miner Res; 2002 May; 17(5):907-14. PubMed ID: 12009022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of the bone-tissue remodeling response to axial and torsional loading in the turkey ulna.
    Rubin C; Gross T; Qin YX; Fritton S; Guilak F; McLeod K
    J Bone Joint Surg Am; 1996 Oct; 78(10):1523-33. PubMed ID: 8876580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis.
    Prendergast PJ; Huiskes R
    J Biomech Eng; 1996 May; 118(2):240-6. PubMed ID: 8738790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microdamage induced by in vivo Reference Point Indentation in mice is repaired by osteocyte-apoptosis mediated remodeling.
    Kennedy OD; Lendhey M; Mauer P; Philip A; Basta-Pljakic J; Schaffler MB
    Bone; 2017 Feb; 95():192-198. PubMed ID: 27919734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.