These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9737354)

  • 1. Influence of microdamage on fracture toughness of the human femur and tibia.
    Norman TL; Yeni YN; Brown CU; Wang Z
    Bone; 1998 Sep; 23(3):303-6. PubMed ID: 9737354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of bone morphology on fracture toughness of the human femur and tibia.
    Yeni YN; Brown CU; Wang Z; Norman TL
    Bone; 1997 Nov; 21(5):453-9. PubMed ID: 9356740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft.
    Brown CU; Yeni YN; Norman TL
    J Biomed Mater Res; 2000 Mar; 49(3):380-9. PubMed ID: 10602071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdamage of human cortical bone: incidence and morphology in long bones.
    Norman TL; Wang Z
    Bone; 1997 Apr; 20(4):375-9. PubMed ID: 9108359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of bone composition and apparent density on fracture toughness of the human femur and tibia.
    Yeni YN; Brown CU; Norman TL
    Bone; 1998 Jan; 22(1):79-84. PubMed ID: 9437517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture toughness of human femoral neck: effect of microstructure, composition, and age.
    Yeni YN; Norman TL
    Bone; 2000 May; 26(5):499-504. PubMed ID: 10773590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties.
    Wang XD; Masilamani NS; Mabrey JD; Alder ME; Agrawal CM
    Bone; 1998 Jul; 23(1):67-72. PubMed ID: 9662132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture mechanics of bone--the effects of density, specimen thickness and crack velocity on longitudinal fracture.
    Behiri JC; Bonfield W
    J Biomech; 1984; 17(1):25-34. PubMed ID: 6715385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancellous bone microdamage in the proximal femur: influence of age and osteoarthritis on damage morphology and regional distribution.
    Fazzalari NL; Kuliwaba JS; Forwood MR
    Bone; 2002 Dec; 31(6):697-702. PubMed ID: 12531564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of aging on the toughness of human cortical bone: evaluation by R-curves.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Bone; 2004 Dec; 35(6):1240-6. PubMed ID: 15589205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment.
    Allen MR; Burr DB
    J Bone Miner Res; 2007 Nov; 22(11):1759-65. PubMed ID: 17663638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging and matrix microdamage accumulation in human compact bone.
    Schaffler MB; Choi K; Milgrom C
    Bone; 1995 Dec; 17(6):521-25. PubMed ID: 8835305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-animal PET/CT assessment of bone microdamage in ovariectomized rats.
    Li ZC; Jiang SD; Yan J; Jiang LS; Dai LY
    J Nucl Med; 2011 May; 52(5):769-75. PubMed ID: 21498537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites.
    Gauthier R; Follet H; Langer M; Meille S; Chevalier J; Rongiéras F; Peyrin F; Mitton D
    J Mech Behav Biomed Mater; 2017 Jul; 71():223-230. PubMed ID: 28360020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased susceptibility to microdamage in Brtl/+ mouse model for osteogenesis imperfecta.
    Davis MS; Kovacic BL; Marini JC; Shih AJ; Kozloff KM
    Bone; 2012 Mar; 50(3):784-91. PubMed ID: 22207275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone mineral density after the removal of intramedullary nails: a cross-sectional and longitudinal study.
    Kröger H; Kettunen J; Bowditch M; Joukainen J; Suomalainen O; Alhava E
    J Orthop Sci; 2002; 7(3):325-30. PubMed ID: 12077657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.