These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 9737481)

  • 1. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism.
    Lopaschuk GD
    Am J Cardiol; 1998 Sep; 82(5A):14K-17K. PubMed ID: 9737481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism].
    Lopaschuk GD
    Presse Med; 1998 Dec; 27(39):2100-4. PubMed ID: 9893703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated?
    Lopaschuk GD
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic therapy for ischemic heart disease: the rationale for inhibition of fatty acid oxidation.
    Stanley WC; Sabbah HN
    Heart Fail Rev; 2005 Dec; 10(4):275-9. PubMed ID: 16583175
    [No Abstract]   [Full Text] [Related]  

  • 6. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway.
    Liu Z; Chen JM; Huang H; Kuznicki M; Zheng S; Sun W; Quan N; Wang L; Yang H; Guo HM; Li J; Zhuang J; Zhu P
    Metabolism; 2016 Mar; 65(3):122-30. PubMed ID: 26892523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine.
    Stanley WC; Marzilli M
    Fundam Clin Pharmacol; 2003 Apr; 17(2):133-45. PubMed ID: 12667223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemic myocardial tissue: an evaluation by positron emission tomography.
    Mody FV; Singh BN; Mohiuddin IH; Coyle KB; Buxton DB; Hansen HW; Sumida R; Schelbert HR
    Am J Cardiol; 1998 Sep; 82(5A):42K-49K. PubMed ID: 9737485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trimetazidine in the myocardial cell mechanisms of cytoprotection.
    Labrid C
    Rom J Intern Med; 1998; 36(3-4):137-44. PubMed ID: 10822510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of metabolically active drugs in the management of ischemic heart disease.
    Schofield RS; Hill JA
    Am J Cardiovasc Drugs; 2001; 1(1):23-35. PubMed ID: 14728049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial metabolic manipulation: a new therapeutic approach in heart failure?
    O'Meara E; McMurray JJ
    Heart; 2005 Feb; 91(2):131-2. PubMed ID: 15657211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the cytoprotective effect of trimetazidine associated with lipid metabolism?
    Sentex E; Sergiel JP; Lucien A; Grynberg A
    Am J Cardiol; 1998 Sep; 82(5A):18K-24K. PubMed ID: 9737482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic and metabolic imbalance as potential factors of ischemia reperfusion injury.
    El Banani H; Bernard M; Cozzone P; James F; Feuvray D
    Am J Cardiol; 1998 Sep; 82(5A):25K-29K. PubMed ID: 9737483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic management of ischemic heart disease: clinical data with trimetazidine.
    Desideri A; Celegon L
    Am J Cardiol; 1998 Sep; 82(5A):50K-53K. PubMed ID: 9737486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic therapy for the diabetic patients with ischaemic heart disease.
    Rosano GM; Vitale C; Volterrani M; Fini M
    Coron Artery Dis; 2005 Nov; 16 Suppl 1():S17-21. PubMed ID: 16340399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adverse effects of free fatty acid associated with increased oxidative stress in postischemic isolated rat hearts.
    Gambert S; Vergely C; Filomenko R; Moreau D; Bettaieb A; Opie LH; Rochette L
    Mol Cell Biochem; 2006 Feb; 283(1-2):147-52. PubMed ID: 16444597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimetazidine and the contractile response of dysfunctional myocardium in ischaemic cardiomyopathy.
    Belardinelli R
    Rev Port Cardiol; 2000 Nov; 19 Suppl 5():V35-9. PubMed ID: 11206102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial energy metabolism during ischemia and the mechanisms of metabolic therapies.
    Stanley WC
    J Cardiovasc Pharmacol Ther; 2004 Sep; 9 Suppl 1():S31-45. PubMed ID: 15378130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.