BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 9737485)

  • 1. Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemic myocardial tissue: an evaluation by positron emission tomography.
    Mody FV; Singh BN; Mohiuddin IH; Coyle KB; Buxton DB; Hansen HW; Sumida R; Schelbert HR
    Am J Cardiol; 1998 Sep; 82(5A):42K-49K. PubMed ID: 9737485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimetazidine and the contractile response of dysfunctional myocardium in ischaemic cardiomyopathy.
    Belardinelli R
    Rev Port Cardiol; 2000 Nov; 19 Suppl 5():V35-9. PubMed ID: 11206102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway.
    Liu Z; Chen JM; Huang H; Kuznicki M; Zheng S; Sun W; Quan N; Wang L; Yang H; Guo HM; Li J; Zhuang J; Zhu P
    Metabolism; 2016 Mar; 65(3):122-30. PubMed ID: 26892523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of trimetazidine on utilization of myocardial glycogen during coronary ligation in dogs.
    Sakai K; Fukushi Y; Abiko Y
    Pharmacology; 1986; 32(2):72-9. PubMed ID: 3952133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimetazidine normalizes postischemic function of hypertrophied rat hearts.
    Saeedi R; Grist M; Wambolt RB; Bescond-Jacquet A; Lucien A; Allard MF
    J Pharmacol Exp Ther; 2005 Jul; 314(1):446-54. PubMed ID: 15840766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans.
    Bucci M; Borra R; Någren K; Pärkkä JP; Del Ry S; Maggio R; Tuunanen H; Viljanen T; Cabiati M; Rigazio S; Taittonen M; Pagotto U; Parkkola R; Opie LH; Nuutila P; Knuuti J; Iozzo P
    Cardiovasc Ther; 2012 Dec; 30(6):333-41. PubMed ID: 21884010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of trimetazidine on ischemic contracture in isolated perfused rat hearts.
    Boucher FR; Hearse DJ; Opie LH
    J Cardiovasc Pharmacol; 1994 Jul; 24(1):45-9. PubMed ID: 7521488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early recovery of regional performance in salvaged ischemic myocardium following coronary artery occlusion in the dog.
    Darsee JR; Kloner RA; Braunwald E
    J Clin Invest; 1981 Jul; 68(1):225-39. PubMed ID: 7019244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine.
    Skierczynska A; Beresewicz A
    J Physiol Pharmacol; 2010 Apr; 61(2):153-62. PubMed ID: 20436215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow.
    King LM; Opie LH
    Cardiovasc Res; 1998 Aug; 39(2):381-92. PubMed ID: 9798523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced myocardial 18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography.
    Rechavia E; de Silva R; Kushwaha SS; Rhodes CG; Araujo LI; Jones T; Maseri A; Yacoub MH
    J Am Coll Cardiol; 1997 Aug; 30(2):533-8. PubMed ID: 9247529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study.
    El-Kady T; El-Sabban K; Gabaly M; Sabry A; Abdel-Hady S
    Am J Cardiovasc Drugs; 2005; 5(4):271-8. PubMed ID: 15984909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic and metabolic imbalance as potential factors of ischemia reperfusion injury.
    El Banani H; Bernard M; Cozzone P; James F; Feuvray D
    Am J Cardiol; 1998 Sep; 82(5A):25K-29K. PubMed ID: 9737483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial blood flow, metabolism, and inotropic reserve in dogs with dysfunctional noninfarcted collateral-dependent myocardium.
    Gerber BL; Laycock S; Melin JA; Borgers M; Flameng W; Vanoverschelde JL
    J Nucl Med; 2002 Apr; 43(4):556-65. PubMed ID: 11937602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative effects of nicorandil, nitroglycerin, nicotinic acid, and SG-86 on the metabolic status and functional recovery of the ischemic-reperfused myocardium.
    Gross GJ; Pieper GM; Warltier DC
    J Cardiovasc Pharmacol; 1987; 10 Suppl 8():S76-84. PubMed ID: 2447429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of prolonged metabolic abnormalities in reperfused canine myocardium.
    Buxton DB; Mody FV; Krivokapich J; Phelps ME; Schelbert HR
    Circulation; 1992 May; 85(5):1842-56. PubMed ID: 1572040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate use in ischemic and reperfused canine myocardium: quantitative considerations.
    Myears DW; Sobel BE; Bergmann SR
    Am J Physiol; 1987 Jul; 253(1 Pt 2):H107-14. PubMed ID: 3605356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism].
    Lopaschuk GD
    Presse Med; 1998 Dec; 27(39):2100-4. PubMed ID: 9893703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.