These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 9737485)
1. Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemic myocardial tissue: an evaluation by positron emission tomography. Mody FV; Singh BN; Mohiuddin IH; Coyle KB; Buxton DB; Hansen HW; Sumida R; Schelbert HR Am J Cardiol; 1998 Sep; 82(5A):42K-49K. PubMed ID: 9737485 [TBL] [Abstract][Full Text] [Related]
2. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Kantor PF; Lucien A; Kozak R; Lopaschuk GD Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420 [TBL] [Abstract][Full Text] [Related]
3. Trimetazidine and the contractile response of dysfunctional myocardium in ischaemic cardiomyopathy. Belardinelli R Rev Port Cardiol; 2000 Nov; 19 Suppl 5():V35-9. PubMed ID: 11206102 [TBL] [Abstract][Full Text] [Related]
4. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Liu Z; Chen JM; Huang H; Kuznicki M; Zheng S; Sun W; Quan N; Wang L; Yang H; Guo HM; Li J; Zhuang J; Zhu P Metabolism; 2016 Mar; 65(3):122-30. PubMed ID: 26892523 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effect of trimetazidine on utilization of myocardial glycogen during coronary ligation in dogs. Sakai K; Fukushi Y; Abiko Y Pharmacology; 1986; 32(2):72-9. PubMed ID: 3952133 [TBL] [Abstract][Full Text] [Related]
6. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Lopaschuk GD; Barr R; Thomas PD; Dyck JR Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392 [TBL] [Abstract][Full Text] [Related]
7. Trimetazidine normalizes postischemic function of hypertrophied rat hearts. Saeedi R; Grist M; Wambolt RB; Bescond-Jacquet A; Lucien A; Allard MF J Pharmacol Exp Ther; 2005 Jul; 314(1):446-54. PubMed ID: 15840766 [TBL] [Abstract][Full Text] [Related]
8. Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans. Bucci M; Borra R; Någren K; Pärkkä JP; Del Ry S; Maggio R; Tuunanen H; Viljanen T; Cabiati M; Rigazio S; Taittonen M; Pagotto U; Parkkola R; Opie LH; Nuutila P; Knuuti J; Iozzo P Cardiovasc Ther; 2012 Dec; 30(6):333-41. PubMed ID: 21884010 [TBL] [Abstract][Full Text] [Related]
9. Effects of trimetazidine on ischemic contracture in isolated perfused rat hearts. Boucher FR; Hearse DJ; Opie LH J Cardiovasc Pharmacol; 1994 Jul; 24(1):45-9. PubMed ID: 7521488 [TBL] [Abstract][Full Text] [Related]
10. Early recovery of regional performance in salvaged ischemic myocardium following coronary artery occlusion in the dog. Darsee JR; Kloner RA; Braunwald E J Clin Invest; 1981 Jul; 68(1):225-39. PubMed ID: 7019244 [TBL] [Abstract][Full Text] [Related]
11. Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine. Skierczynska A; Beresewicz A J Physiol Pharmacol; 2010 Apr; 61(2):153-62. PubMed ID: 20436215 [TBL] [Abstract][Full Text] [Related]
12. Glucose delivery is a major determinant of glucose utilisation in the ischemic myocardium with a residual coronary flow. King LM; Opie LH Cardiovasc Res; 1998 Aug; 39(2):381-92. PubMed ID: 9798523 [TBL] [Abstract][Full Text] [Related]
13. Enhanced myocardial 18F-2-fluoro-2-deoxyglucose uptake after orthotopic heart transplantation assessed by positron emission tomography. Rechavia E; de Silva R; Kushwaha SS; Rhodes CG; Araujo LI; Jones T; Maseri A; Yacoub MH J Am Coll Cardiol; 1997 Aug; 30(2):533-8. PubMed ID: 9247529 [TBL] [Abstract][Full Text] [Related]
14. Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study. El-Kady T; El-Sabban K; Gabaly M; Sabry A; Abdel-Hady S Am J Cardiovasc Drugs; 2005; 5(4):271-8. PubMed ID: 15984909 [TBL] [Abstract][Full Text] [Related]
15. Ionic and metabolic imbalance as potential factors of ischemia reperfusion injury. El Banani H; Bernard M; Cozzone P; James F; Feuvray D Am J Cardiol; 1998 Sep; 82(5A):25K-29K. PubMed ID: 9737483 [TBL] [Abstract][Full Text] [Related]
16. Myocardial blood flow, metabolism, and inotropic reserve in dogs with dysfunctional noninfarcted collateral-dependent myocardium. Gerber BL; Laycock S; Melin JA; Borgers M; Flameng W; Vanoverschelde JL J Nucl Med; 2002 Apr; 43(4):556-65. PubMed ID: 11937602 [TBL] [Abstract][Full Text] [Related]
17. Comparative effects of nicorandil, nitroglycerin, nicotinic acid, and SG-86 on the metabolic status and functional recovery of the ischemic-reperfused myocardium. Gross GJ; Pieper GM; Warltier DC J Cardiovasc Pharmacol; 1987; 10 Suppl 8():S76-84. PubMed ID: 2447429 [TBL] [Abstract][Full Text] [Related]