BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9737875)

  • 1. Stabilization of intramolecular triple/single-strand structure by cationic peptides.
    Potaman VN; Sinden RR
    Biochemistry; 1998 Sep; 37(37):12952-61. PubMed ID: 9737875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of DNA triple-helix formation by appended cationic peptides.
    Tung CH; Breslauer KJ; Stein S
    Bioconjug Chem; 1996; 7(5):529-31. PubMed ID: 8889011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific binding and stabilization of DNA and phosphorothioate DNA by amphiphilic alpha-helical peptides.
    Kubo T; Fujii M
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1313-6. PubMed ID: 11563011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of triple-helical nucleic acids by basic oligopeptides.
    Potaman VN; Sinden RR
    Biochemistry; 1995 Nov; 34(45):14885-92. PubMed ID: 7578100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple-helix specific ligands stabilize H-DNA conformation.
    Duval-Valentin G; de Bizemont T; Takasugi M; Mergny JL; Bisagni E; Hélène C
    J Mol Biol; 1995 Apr; 247(5):847-58. PubMed ID: 7723037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comb-type polycations effectively stabilize DNA triplex.
    Maruyama A; Katoh M; Ishihara T; Akaike T
    Bioconjug Chem; 1997; 8(1):3-6. PubMed ID: 9026028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzoquinoquinoxaline derivatives stabilize and cleave H-DNA and repress transcription downstream of a triplex-forming sequence.
    Amiri H; Nekhotiaeva N; Sun JS; Nguyen CH; Grierson DS; Good L; Zain R
    J Mol Biol; 2005 Aug; 351(4):776-83. PubMed ID: 16045927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions.
    Cheng RP; Girinath P; Ahmad R
    Biochemistry; 2007 Sep; 46(37):10528-37. PubMed ID: 17718542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies.
    Mann A; Thakur G; Shukla V; Singh AK; Khanduri R; Naik R; Jiang Y; Kalra N; Dwarakanath BS; Langel U; Ganguli M
    Mol Pharm; 2011 Oct; 8(5):1729-41. PubMed ID: 21780847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational and structural analysis of the equilibrium between single- and double-strand beta-helix of a D,L-alternating oligonorleucine.
    Navarro E; Fenude E; Celda B
    Biopolymers; 2004 Feb; 73(2):229-41. PubMed ID: 14755580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Duplex recognition by oligonucleotides containing 2'-deoxy-2'-fluoro-D-arabinose and 2'-deoxy-2'-fluoro-D-ribose. Intermolecular 2'-OH-phosphate contacts versus sugar puckering in the stabilization of triple-helical complexes.
    Wilds CJ; Damha MJ
    Bioconjug Chem; 1999; 10(2):299-305. PubMed ID: 10077480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monomeric and heterodimeric triple helical DNA mimics.
    Trkulja I; Häner R
    J Am Chem Soc; 2007 Jun; 129(25):7982-9. PubMed ID: 17542587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of formation of the H-y5 isomer of an intramolecular DNA triple helix.
    van Dongen MJ; Doreleijers JF; van der Marel GA; van Boom JH; Hilbers CW; Wijmenga SS
    Nat Struct Biol; 1999 Sep; 6(9):854-9. PubMed ID: 10467098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure.
    Cherny DI; Jovin TM
    J Mol Biol; 2001 Oct; 313(2):295-307. PubMed ID: 11800558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt bridges do not stabilize polyproline II helices.
    Whittington SJ; Creamer TP
    Biochemistry; 2003 Dec; 42(49):14690-5. PubMed ID: 14661982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    Biochemistry; 2005 Feb; 44(5):1414-22. PubMed ID: 15683226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein complexation with DNA phosphates as a cause for DNA duplex destabilization: a thermodynamic model.
    Van Genderen MH; Buck HM
    Biopolymers; 1989 Oct; 28(10):1653-65. PubMed ID: 2597722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positively charged residues in DNA-binding domains of structural proteins follow sequence-specific positions of DNA phosphate groups.
    Cherstvy AG
    J Phys Chem B; 2009 Apr; 113(13):4242-7. PubMed ID: 19256532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair.
    Kramer RZ; Venugopal MG; Bella J; Mayville P; Brodsky B; Berman HM
    J Mol Biol; 2000 Sep; 301(5):1191-205. PubMed ID: 10966815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.