These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9737982)

  • 1. Testing the charge difference hypothesis for the assembly of a eucaryotic multispanning membrane protein.
    Sato M; Hresko R; Mueckler M
    J Biol Chem; 1998 Sep; 273(39):25203-8. PubMed ID: 9737982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-scanning mutagenesis of flanking regions at the boundary between external loop I or IV and transmembrane segment II or VII in the GLUT1 glucose transporter.
    Olsowski A; Monden I; Keller K
    Biochemistry; 1998 Jul; 37(30):10738-45. PubMed ID: 9692964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway.
    Mueckler M; Makepeace C
    J Biol Chem; 1999 Apr; 274(16):10923-6. PubMed ID: 10196171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2002 Feb; 277(5):3498-503. PubMed ID: 11713254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology.
    Sato M; Mueckler M
    J Biol Chem; 1999 Aug; 274(35):24721-5. PubMed ID: 10455140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUT1 facilitative glucose transporter.
    Hruz PW; Mueckler MM
    Biochemistry; 2000 Aug; 39(31):9367-72. PubMed ID: 10924131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the topology of eukaryotic membrane proteins.
    Sipos L; von Heijne G
    Eur J Biochem; 1993 May; 213(3):1333-40. PubMed ID: 8099327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of transmembrane segment 8 of the GLUT1 glucose transporter by cysteine-scanning mutagenesis and substituted cysteine accessibility.
    Mueckler M; Makepeace C
    J Biol Chem; 2004 Mar; 279(11):10494-9. PubMed ID: 14688257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine scanning mutagenesis of helices 2 and 7 in GLUT1 identifies an exofacial cleft in both transmembrane segments.
    Olsowski A; Monden I; Krause G; Keller K
    Biochemistry; 2000 Mar; 39(10):2469-74. PubMed ID: 10704196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter.
    Hruz PW; Mueckler MM
    J Biol Chem; 1999 Dec; 274(51):36176-80. PubMed ID: 10593902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane segment 3 of the Glut1 glucose transporter is an outer helix.
    Mueckler M; Roach W; Makepeace C
    J Biol Chem; 2004 Nov; 279(45):46876-81. PubMed ID: 15308632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tryptophan 388 in putative transmembrane segment 10 of the rat glucose transporter Glut1 is essential for glucose transport.
    Kasahara T; Kasahara M
    J Biol Chem; 1998 Oct; 273(44):29113-7. PubMed ID: 9786919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane targeting and determination of transmembrane topology of the human vasopressin V2 receptor.
    Schülein R; Rutz C; Rosenthal W
    J Biol Chem; 1996 Nov; 271(46):28844-52. PubMed ID: 8910530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological "frustration" in multispanning E. coli inner membrane proteins.
    Gafvelin G; von Heijne G
    Cell; 1994 May; 77(3):401-12. PubMed ID: 8181060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charged residues are major determinants of the transmembrane orientation of a signal-anchor sequence.
    Beltzer JP; Fiedler K; Fuhrer C; Geffen I; Handschin C; Wessels HP; Spiess M
    J Biol Chem; 1991 Jan; 266(2):973-8. PubMed ID: 1985975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The catalytic activity of the endoplasmic reticulum-resident protein microsomal epoxide hydrolase towards carcinogens is retained on inversion of its membrane topology.
    Friedberg T; Holler R; Löllmann B; Arand M; Oesch F
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):131-6. PubMed ID: 8870659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity.
    Liu Q; Vera JC; Peng H; Golde DW
    Biochemistry; 2001 Jul; 40(26):7874-81. PubMed ID: 11425315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forced transmembrane orientation of hydrophilic polypeptide segments in multispanning membrane proteins.
    Ota K; Sakaguchi M; von Heijne G; Hamasaki N; Mihara K
    Mol Cell; 1998 Oct; 2(4):495-503. PubMed ID: 9809071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of charged residues in determining transmembrane protein insertion orientation in yeast.
    Harley CA; Tipper DJ
    J Biol Chem; 1996 Oct; 271(40):24625-33. PubMed ID: 8798728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.