These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 9738889)
21. Repair of alkylation damage in the fungus Aspergillus nidulans. Swirski RA; Shawcross SG; Faulkner BM; Strike P Mutat Res; 1988 May; 193(3):255-68. PubMed ID: 2452348 [TBL] [Abstract][Full Text] [Related]
22. Aspergillus nidulans uvsBATR and scaANBS1 genes show genetic interactions during recovery from replication stress and DNA damage. Fagundes MR; Semighini CP; Malavazi I; Savoldi M; de Lima JF; de Souza Goldman MH; Harris SD; Goldman GH Eukaryot Cell; 2005 Jul; 4(7):1239-52. PubMed ID: 16002650 [TBL] [Abstract][Full Text] [Related]
23. Quantification of DNA damage and repair in amino acid auxotrophs and UV-sensitive mutants of Aspergillus nidulans using an ELISA. Donnelly E; Barnett YA; McCullough W FEBS Lett; 1995 Dec; 377(2):118-22. PubMed ID: 8543032 [TBL] [Abstract][Full Text] [Related]
24. Frequency of spontaneous and induced recessive mutations in a diploid strain of Aspergillus nidulans. Babudri N; Morpurgo G Mutat Res; 1990 Jun; 230(2):187-95. PubMed ID: 2197553 [TBL] [Abstract][Full Text] [Related]
25. Cloning of the DNA repair genes mtcA, mtcB, uvsC, uvsD, uvsE and the leuB gene from Deinococcus radiodurans. Al-Bakri GH; Mackay MW; Whittaker PA; Moseley BE Gene; 1985; 33(3):305-11. PubMed ID: 2989093 [TBL] [Abstract][Full Text] [Related]
26. Transcriptome analysis of Aspergillus nidulans exposed to camptothecin-induced DNA damage. Malavazi I; Savoldi M; Di Mauro SM; Menck CF; Harris SD; Goldman MH; Goldman GH Eukaryot Cell; 2006 Oct; 5(10):1688-704. PubMed ID: 17030995 [TBL] [Abstract][Full Text] [Related]
27. p-fluoro-phenylalanine resistance in Aspergillus nidulans diploid cells: evidence that dominant, lethal mutations are involved. Babudri N; Morpurgo G Curr Genet; 1990 Jun; 17(6):519-22. PubMed ID: 2202526 [TBL] [Abstract][Full Text] [Related]
28. Genetic interactions between mutants of the 'error-prone' repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Liefshitz B; Steinlauf R; Friedl A; Eckardt-Schupp F; Kupiec M Mutat Res; 1998 Mar; 407(2):135-45. PubMed ID: 9637242 [TBL] [Abstract][Full Text] [Related]
29. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Scott AD; Neishabury M; Jones DH; Reed SH; Boiteux S; Waters R Yeast; 1999 Feb; 15(3):205-18. PubMed ID: 10077187 [TBL] [Abstract][Full Text] [Related]
30. The genetic activity of 6-N-hydroxylaminopurine in Aspergillus nidulans. Babudri N; Salvini D; Pimpinelli S; Morpurgo G Mutat Res; 1994 Apr; 321(1-2):19-26. PubMed ID: 7510841 [TBL] [Abstract][Full Text] [Related]
31. UV mutagenesis in inhibitor depleted conidia of Aspergillus nidulans. Scott BR; Alderson T; Papworth DG Mutat Res; 1976 Jun; 35(2):213-20. PubMed ID: 14997599 [TBL] [Abstract][Full Text] [Related]
32. Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. IV. Genetic analysis of mitotic intragenic recombinants from uvs + -uvs + ,uvsD-uvsD and uvsE-uvsE diploids. Fortuin JJ Mutat Res; 1971 Oct; 13(2):137-48. PubMed ID: 4945004 [No Abstract] [Full Text] [Related]
33. The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. Davis MA; Small AJ; Kourambas S; Hynes MJ J Bacteriol; 1996 Jun; 178(11):3406-9. PubMed ID: 8655534 [TBL] [Abstract][Full Text] [Related]
34. Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Gavrias V; Andrianopoulos A; Gimeno CJ; Timberlake WE Mol Microbiol; 1996 Mar; 19(6):1255-63. PubMed ID: 8730867 [TBL] [Abstract][Full Text] [Related]
35. Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. 3. Photoreactivation of UV damage in uvsD and uvsE mutants. Fortuin JJ Mutat Res; 1971 Oct; 13(2):131-6. PubMed ID: 4945003 [No Abstract] [Full Text] [Related]
36. The snpA, a temperature-sensitive suppressor of npgA1, encodes the eukaryotic translation release factor, eRF1, in Aspergillus nidulans. Han KH; Kim JH; Kim WS; Han DM FEMS Microbiol Lett; 2005 Oct; 251(1):155-60. PubMed ID: 16125337 [TBL] [Abstract][Full Text] [Related]
37. Germinating conidiospores of Aspergillus amino acid auxotrophs are hypersensitive to heat shock, oxidative stress and DNA damage. Donnelly E; Barnett YA; McCullough W FEBS Lett; 1994 Nov; 355(2):201-4. PubMed ID: 7982501 [TBL] [Abstract][Full Text] [Related]
38. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Interthal H; Heyer WD Mol Gen Genet; 2000 Jun; 263(5):812-27. PubMed ID: 10905349 [TBL] [Abstract][Full Text] [Related]
39. Nucleotide excision repair and photolyase preferentially repair the nontranscribed strand of RNA polymerase III-transcribed genes in Saccharomyces cerevisiae. Aboussekhra A; Thoma F Genes Dev; 1998 Feb; 12(3):411-21. PubMed ID: 9450934 [TBL] [Abstract][Full Text] [Related]
40. Dual role for the yeast THI4 gene in thiamine biosynthesis and DNA damage tolerance. Machado CR; Praekelt UM; de Oliveira RC; Barbosa AC; Byrne KL; Meacock PA; Menck CF J Mol Biol; 1997 Oct; 273(1):114-21. PubMed ID: 9367751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]