These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 9739042)

  • 41. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.
    Cotter DG; Ercal B; d'Avignon DA; Dietzen DJ; Crawford PA
    Am J Physiol Endocrinol Metab; 2014 Jul; 307(2):E176-85. PubMed ID: 24865983
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CD36 deficiency rescues lipotoxic cardiomyopathy.
    Yang J; Sambandam N; Han X; Gross RW; Courtois M; Kovacs A; Febbraio M; Finck BN; Kelly DP
    Circ Res; 2007 Apr; 100(8):1208-17. PubMed ID: 17363697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth.
    Barger PM; Brandt JM; Leone TC; Weinheimer CJ; Kelly DP
    J Clin Invest; 2000 Jun; 105(12):1723-30. PubMed ID: 10862787
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation.
    Larter CZ; Yeh MM; Cheng J; Williams J; Brown S; dela Pena A; Bell-Anderson KS; Farrell GC
    J Gastroenterol Hepatol; 2008 Feb; 23(2):267-75. PubMed ID: 17868330
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ketone Body Therapy Protects From Lipotoxicity and Acute Liver Failure Upon Pparα Deficiency.
    Pawlak M; Baugé E; Lalloyer F; Lefebvre P; Staels B
    Mol Endocrinol; 2015 Aug; 29(8):1134-43. PubMed ID: 26087172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis.
    Standage SW; Bennion BG; Knowles TO; Ledee DR; Portman MA; McGuire JK; Liles WC; Olson AK
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H239-H249. PubMed ID: 27881386
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PPARα is essential for retinal lipid metabolism and neuronal survival.
    Pearsall EA; Cheng R; Zhou K; Takahashi Y; Matlock HG; Vadvalkar SS; Shin Y; Fredrick TW; Gantner ML; Meng S; Fu Z; Gong Y; Kinter M; Humphries KM; Szweda LI; Smith LEH; Ma JX
    BMC Biol; 2017 Nov; 15(1):113. PubMed ID: 29183319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts.
    Gélinas R; Labarthe F; Bouchard B; Mc Duff J; Charron G; Young ME; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1571-80. PubMed ID: 18223187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced hepatic fatty acid oxidation in fasting PPARalpha null mice is due to impaired mitochondrial hydroxymethylglutaryl-CoA synthase gene expression.
    Le May C; Pineau T; Bigot K; Kohl C; Girard J; Pégorier JP
    FEBS Lett; 2000 Jun; 475(3):163-6. PubMed ID: 10869548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. mTORC1 activation is not sufficient to suppress hepatic PPARα signaling or ketogenesis.
    Selen ES; Wolfgang MJ
    J Biol Chem; 2021 Jul; 297(1):100884. PubMed ID: 34146544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of PPARalpha on cardiac glucose metabolism: a transcriptional equivalent of the glucose-fatty acid cycle?
    Finck BN
    Expert Rev Cardiovasc Ther; 2006 Mar; 4(2):161-71. PubMed ID: 16509812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hepatic PPARα is critical in the metabolic adaptation to sepsis.
    Paumelle R; Haas JT; Hennuyer N; Baugé E; Deleye Y; Mesotten D; Langouche L; Vanhoutte J; Cudejko C; Wouters K; Hannou SA; Legry V; Lancel S; Lalloyer F; Polizzi A; Smati S; Gourdy P; Vallez E; Bouchaert E; Derudas B; Dehondt H; Gheeraert C; Fleury S; Tailleux A; Montagner A; Wahli W; Van Den Berghe G; Guillou H; Dombrowicz D; Staels B
    J Hepatol; 2019 May; 70(5):963-973. PubMed ID: 30677458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure.
    Portilla D; Dai G; Peters JM; Gonzalez FJ; Crew MD; Proia AD
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F667-75. PubMed ID: 10751229
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glucose directly links to lipid metabolism through high affinity interaction with peroxisome proliferator-activated receptor alpha.
    Hostetler HA; Huang H; Kier AB; Schroeder F
    J Biol Chem; 2008 Jan; 283(4):2246-54. PubMed ID: 18055466
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peroxisome proliferator-activated receptor-alpha regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines.
    Akiyama TE; Nicol CJ; Fievet C; Staels B; Ward JM; Auwerx J; Lee SS; Gonzalez FJ; Peters JM
    J Biol Chem; 2001 Oct; 276(42):39088-93. PubMed ID: 11495927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart.
    Razeghi P; Young ME; Abbasi S; Taegtmeyer H
    Biochem Biophys Res Commun; 2001 Sep; 287(1):5-10. PubMed ID: 11549245
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle.
    Campbell SE; Mehan KA; Tunstall RJ; Febbraio MA; Cameron-Smith D
    J Mol Endocrinol; 2003 Aug; 31(1):37-45. PubMed ID: 12914523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maternal Lipid Metabolism Directs Fetal Liver Programming following Nutrient Stress.
    Bowman CE; Selen Alpergin ES; Cavagnini K; Smith DM; Scafidi S; Wolfgang MJ
    Cell Rep; 2019 Oct; 29(5):1299-1310.e3. PubMed ID: 31665641
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish.
    Li LY; Li JM; Ning LJ; Lu DL; Luo Y; Ma Q; Limbu SM; Li DL; Chen LQ; Lodhi IJ; Degrace P; Zhang ML; Du ZY
    J Nutr; 2020 Sep; 150(9):2322-2335. PubMed ID: 32720689
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic and genetic regulation of cardiac energy substrate preference.
    Kodde IF; van der Stok J; Smolenski RT; de Jong JW
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jan; 146(1):26-39. PubMed ID: 17081788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.