BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9739098)

  • 41. Central administration of methamphetamine synergizes with metabolic inhibition to deplete striatal monoamines.
    Burrows KB; Nixdorf WL; Yamamoto BK
    J Pharmacol Exp Ther; 2000 Mar; 292(3):853-60. PubMed ID: 10688597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Escalating Methamphetamine Regimen Induces Compensatory Mechanisms, Mitochondrial Biogenesis, and GDNF Expression, in Substantia Nigra.
    Valian N; Ahmadiani A; Dargahi L
    J Cell Biochem; 2017 Jun; 118(6):1369-1378. PubMed ID: 27862224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dopamine uptake inhibitors block long-term neurotoxic effects of methamphetamine upon dopaminergic neurons.
    Marek GJ; Vosmer G; Seiden LS
    Brain Res; 1990 Apr; 513(2):274-9. PubMed ID: 2140952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MPTP neurotoxicity is highly concordant between the sexes among BXD recombinant inbred mouse strains.
    Alam G; Miller DB; O'Callaghan JP; Lu L; Williams RW; Jones BC
    Neurotoxicology; 2016 Jul; 55():40-47. PubMed ID: 27182044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relation between methamphetamine-induced monoamine depletions in the striatum and sequential motor learning.
    Daberkow DP; Kesner RP; Keefe KA
    Pharmacol Biochem Behav; 2005 May; 81(1):198-204. PubMed ID: 15894079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduced degeneration of dopaminergic terminals and accentuated astrocyte activation by high dose methamphetamine administration in nociceptin receptor knock out mice.
    Sakoori K; Murphy NP
    Neurosci Lett; 2010 Jan; 469(3):309-13. PubMed ID: 20025929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3,4-methylenedioxymethamphetamine (MDMA) administration to rats decreases brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein.
    Wang X; Baumann MH; Xu H; Rothman RB
    Synapse; 2004 Sep; 53(4):240-8. PubMed ID: 15266556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2.
    Ramkissoon A; Wells PG
    Free Radic Biol Med; 2015 Dec; 89():358-68. PubMed ID: 26427884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.
    Albers DS; Sonsalla PK
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1104-14. PubMed ID: 8531070
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine.
    Cass WA; Smith MP; Peters LE
    Ann N Y Acad Sci; 2006 Aug; 1074():261-71. PubMed ID: 17105922
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic stress augments the long-term and acute effects of methamphetamine.
    Matuszewich L; Yamamoto BK
    Neuroscience; 2004; 124(3):637-46. PubMed ID: 14980734
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine.
    Baldwin HA; Colado MI; Murray TK; De Souza RJ; Green AR
    Br J Pharmacol; 1993 Mar; 108(3):590-6. PubMed ID: 8467354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prior methamphetamine self-administration attenuates the dopaminergic deficits caused by a subsequent methamphetamine exposure.
    McFadden LM; Vieira-Brock PL; Hanson GR; Fleckenstein AE
    Neuropharmacology; 2015 Jun; 93():146-54. PubMed ID: 25645392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MDMA ("ecstasy"), methamphetamine and their combination: long-term changes in social interaction and neurochemistry in the rat.
    Clemens KJ; Van Nieuwenhuyzen PS; Li KM; Cornish JL; Hunt GE; McGregor IS
    Psychopharmacology (Berl); 2004 May; 173(3-4):318-25. PubMed ID: 15029472
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disparity in the temporal appearance of methamphetamine-induced apoptosis and depletion of dopamine terminal markers in the striatum of mice.
    Zhu JP; Xu W; Angulo JA
    Brain Res; 2005 Jul; 1049(2):171-81. PubMed ID: 16043139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum.
    Kawasaki T; Ishihara K; Ago Y; Nakamura S; Itoh S; Baba A; Matsuda T
    Eur J Pharmacol; 2006 Aug; 542(1-3):92-9. PubMed ID: 16784740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke.
    Jakab RL; Bowyer JF
    Brain Res; 2002 Dec; 958(1):52-69. PubMed ID: 12468030
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors.
    Xu W; Zhu JP; Angulo JA
    Synapse; 2005 Nov; 58(2):110-21. PubMed ID: 16088948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of monoamine uptake inhibitors and methamphetamine on neostriatal 6-hydroxydopamine (6-OHDA) formation, short-term monoamine depletions and locomotor activity in the rat.
    Marek GJ; Vosmer G; Seiden LS
    Brain Res; 1990 May; 516(1):1-7. PubMed ID: 2142010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Histological evidence supporting a role for the striatal neurokinin-1 receptor in methamphetamine-induced neurotoxicity in the mouse brain.
    Yu J; Wang J; Cadet JL; Angulo JA
    Brain Res; 2004 May; 1007(1-2):124-31. PubMed ID: 15064143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.