These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9739553)

  • 1. Engineering of trypsin and its impact on beta-casein processing.
    Chobert JM; Briand L; Léonil J; Mollé D; Haertlé T
    Nahrung; 1998 Aug; 42(3-4):135-8. PubMed ID: 9739553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the substitution of K188 of trypsin binding site by aromatic amino acids can influence the processing of beta-casein.
    Chobert JM; Briand L; Tran V; Haertlé T
    Biochem Biophys Res Commun; 1998 May; 246(3):847-58. PubMed ID: 9618301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.
    Vorob'ev MM; Dalgalarrondo M; Chobert JM; Haertlé T
    Biopolymers; 2000 Oct; 54(5):355-64. PubMed ID: 10935975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin.
    Graf L; Craik CS; Patthy A; Roczniak S; Fletterick RJ; Rutter WJ
    Biochemistry; 1987 May; 26(9):2616-23. PubMed ID: 3111531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of trypsin activity by Cu2+ chelation of the substrate binding site.
    Briand L; Chobert JM; Tauzin J; Declerck N; Léonil J; Mollé D; Tran V; Haertlé T
    Protein Eng; 1997 May; 10(5):551-60. PubMed ID: 9215573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants.
    Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS
    Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and spectroscopic studies of Tritrichomonas foetus low-molecular weight phosphotyrosyl phosphatase. Hydrogen bond networks and electrostatic effects.
    Thomas CL; McKinnon E; Granger BL; Harms E; Van Etten RL
    Biochemistry; 2002 Dec; 41(52):15601-9. PubMed ID: 12501188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of trypsin investigated by using a genetic selection.
    Evnin LB; Vásquez JR; Craik CS
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6659-63. PubMed ID: 2204062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the insertion loop around tryptophan 148 in tthe activity of thrombin.
    DiBella EE; Scheraga HA
    Biochemistry; 1996 Apr; 35(14):4427-33. PubMed ID: 8605192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic complementarity within the substrate-binding pocket of trypsin.
    Gráf L; Jancsó A; Szilágyi L; Hegyi G; Pintér K; Náray-Szabó G; Hepp J; Medzihradszky K; Rutter WJ
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):4961-5. PubMed ID: 3134655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional integrity of specificity and catalytic sites of trypsin.
    Gráf L; Hegyi G; Likó I; Hepp J; Medzihradszky K; Craik CS; Rutter WJ
    Int J Pept Protein Res; 1988 Dec; 32(6):512-8. PubMed ID: 2907752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first semi-synthetic serine protease made by native chemical ligation.
    Pál G; Santamaria F; Kossiakoff AA; Lu W
    Protein Expr Purif; 2003 Jun; 29(2):185-92. PubMed ID: 12767808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein engineering of chymosin; modification of the optimum pH of enzyme catalysis.
    Mantafounis D; Pitts J
    Protein Eng; 1990 Jul; 3(7):605-9. PubMed ID: 2217134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redesign of catalytic center of an enzyme: aspartic to serine proteinase.
    Tanaka T; Yada RY
    Biochem Biophys Res Commun; 2004 Oct; 323(3):947-53. PubMed ID: 15381092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermolecular cleavage by UmuD-like enzymes: identification of residues required for cleavage and substrate specificity.
    McDonald JP; Peat TS; Levine AS; Woodgate R
    J Mol Biol; 1999 Feb; 285(5):2199-209. PubMed ID: 9925794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of trypsin immobilized on oxirane-acrylic beads for obtaining phosphopeptides from casein.
    Lorenzen PC; Schlimme E
    Z Ernahrungswiss; 1995 Jun; 34(2):118-30. PubMed ID: 8525644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the primary substrate specificity of Streptomyces griseus trypsin.
    Page MJ; Wong SL; Hewitt J; Strynadka NC; MacGillivray RT
    Biochemistry; 2003 Aug; 42(30):9060-6. PubMed ID: 12885239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.