These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9739625)

  • 1. Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning.
    Miller CA; Lemieux PM; Touati A
    J Air Waste Manag Assoc; 1998 Aug; 48(8):729-35. PubMed ID: 9739625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of significant factors in reburning with coal volatiles.
    Zarnitz R; Pisupati S
    Environ Sci Technol; 2008 Mar; 42(6):2004-8. PubMed ID: 18409628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.
    Wang ZH; Zhou JH; Zhang YW; Lu ZM; Fan JR; Cen KF
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):187-94. PubMed ID: 15682503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.
    Oh H; Annamalai K; Sweeten JM
    J Air Waste Manag Assoc; 2008 Apr; 58(4):517-29. PubMed ID: 18422038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion.
    Zajemska M; Musiał D; Poskart A
    Environ Technol; 2014; 35(5-8):602-10. PubMed ID: 24645439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of the reburning process using sewage sludge-derived syngas.
    Werle S
    Waste Manag; 2012 Apr; 32(4):753-8. PubMed ID: 22079251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustion, performance, and emission analysis of diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive.
    Vellaiyan S; Subbiah A; Chockalingam P
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33478-33489. PubMed ID: 30267344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.
    Levendis YA; Atal A; Carlson JB; Quintana MD
    Chemosphere; 2001; 42(5-7):775-83. PubMed ID: 11219703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.
    Saiyasitpanich P; Keener TC; Lu M; Liang F; Khang SJ
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1311-7. PubMed ID: 18939778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.
    Reifman J; Feldman EE; Wei TY; Glickert RW
    J Air Waste Manag Assoc; 2000 Feb; 50(2):240-51. PubMed ID: 10680354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.
    Chen CC; Lee WJ
    Environ Sci Technol; 2008 Jan; 42(1):270-5. PubMed ID: 18350907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.
    Park M; Shim SH; Jeong SH; Oh KJ; Lee SS
    J Air Waste Manag Assoc; 2017 Apr; 67(4):402-411. PubMed ID: 27649808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupational exposures to emissions from combustion of diesel and alternative fuels in underground mining--a simulated pilot study.
    Lutz EA; Reed RJ; Lee VS; Burgess JL
    J Occup Environ Hyg; 2015; 12(3):D18-25. PubMed ID: 25412337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of biodiesel made from swine and chicken fat residues on carbon monoxide, carbon dioxide, and nitrogen oxide emissions.
    Feddern V; Cunha Junior A; De Prá MC; Busi da Silva ML; Nicoloso RDS; Higarashi MM; Coldebella A; de Abreu PG
    J Air Waste Manag Assoc; 2017 Jul; 67(7):754-762. PubMed ID: 28081386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.
    Stettler ME; Midgley WJ; Swanson JJ; Cebon D; Boies AM
    Environ Sci Technol; 2016 Feb; 50(4):2018-26. PubMed ID: 26757000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shea meal and cotton stalk as potential fuels for co-combustion with coal.
    Munir S; Nimmo W; Gibbs BM
    Bioresour Technol; 2010 Oct; 101(19):7614-23. PubMed ID: 20483598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.
    Shen G
    J Environ Sci (China); 2015 Nov; 37():1-7. PubMed ID: 26574082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.
    Löschau M
    Waste Manag Res; 2018 Apr; 36(4):342-350. PubMed ID: 29451103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.