These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 9740021)

  • 21. bHLH genes and retinal cell fate specification.
    Yan RT; Ma W; Liang L; Wang SZ
    Mol Neurobiol; 2005 Oct; 32(2):157-71. PubMed ID: 16215280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using neurogenin to reprogram chick RPE to produce photoreceptor-like neurons.
    Li X; Ma W; Zhuo Y; Yan RT; Wang SZ
    Invest Ophthalmol Vis Sci; 2010 Jan; 51(1):516-25. PubMed ID: 19628733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Requirement of multiple basic helix-loop-helix genes for retinal neuronal subtype specification.
    Akagi T; Inoue T; Miyoshi G; Bessho Y; Takahashi M; Lee JE; Guillemot F; Kageyama R
    J Biol Chem; 2004 Jul; 279(27):28492-8. PubMed ID: 15105417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atrophy of Müller glia and photoreceptor cells in chick retina misexpressing cNSCL2.
    Li CM; Yan RT; Wang SZ
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3103-9. PubMed ID: 11726609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xenopus Pax-6 and retinal development.
    Hirsch N; Harris WA
    J Neurobiol; 1997 Jan; 32(1):45-61. PubMed ID: 8989662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proper differentiation of photoreceptors and amacrine cells depends on a regulatory loop between NeuroD and Six6.
    Conte I; Marco-Ferreres R; Beccari L; Cisneros E; Ruiz JM; Tabanera N; Bovolenta P
    Development; 2010 Jul; 137(14):2307-17. PubMed ID: 20534668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. neurogenin2 elicits the genesis of retinal neurons from cultures of nonneural cells.
    Yan RT; Ma WX; Wang SZ
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15014-9. PubMed ID: 11752450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein.
    Lee JE; Hollenberg SM; Snider L; Turner DL; Lipnick N; Weintraub H
    Science; 1995 May; 268(5212):836-44. PubMed ID: 7754368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod.
    Thomas JL; Ochocinska MJ; Hitchcock PF; Thummel R
    PLoS One; 2012; 7(1):e29128. PubMed ID: 22235264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A class of neuroD-related basic helix-loop-helix transcription factors expressed in developing central nervous system in zebrafish.
    Liao J; He J; Yan T; Korzh V; Gong Z
    DNA Cell Biol; 1999 Apr; 18(4):333-44. PubMed ID: 10235116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xath5 participates in a network of bHLH genes in the developing Xenopus retina.
    Kanekar S; Perron M; Dorsky R; Harris WA; Jan LY; Jan YN; Vetter ML
    Neuron; 1997 Nov; 19(5):981-94. PubMed ID: 9390513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Roles of homeobox and bHLH genes in specification of a retinal cell type.
    Hatakeyama J; Tomita K; Inoue T; Kageyama R
    Development; 2001 Apr; 128(8):1313-22. PubMed ID: 11262232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of NeuroD as a differentiation factor in the mammalian retina.
    Ahmad I; Acharya HR; Rogers JA; Shibata A; Smithgall TE; Dooley CM
    J Mol Neurosci; 1998 Oct; 11(2):165-78. PubMed ID: 10096043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina.
    Feng L; Xie X; Joshi PS; Yang Z; Shibasaki K; Chow RL; Gan L
    Development; 2006 Dec; 133(24):4815-25. PubMed ID: 17092954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice.
    Schwab MH; Druffel-Augustin S; Gass P; Jung M; Klugmann M; Bartholomae A; Rossner MJ; Nave KA
    J Neurosci; 1998 Feb; 18(4):1408-18. PubMed ID: 9454850
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreceptor-like cells from reprogramming cultured mammalian RPE cells.
    Yan RT; Li X; Huang J; Guidry C; Wang SZ
    Mol Vis; 2013; 19():1178-87. PubMed ID: 23734087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurogenin1 effectively reprograms cultured chick retinal pigment epithelial cells to differentiate toward photoreceptors.
    Yan RT; Liang L; Ma W; Li X; Xie W; Wang SZ
    J Comp Neurol; 2010 Feb; 518(4):526-46. PubMed ID: 20029995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurogenin3 promotes early retinal neurogenesis.
    Ma W; Yan RT; Mao W; Wang SZ
    Mol Cell Neurosci; 2009 Feb; 40(2):187-98. PubMed ID: 19028584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular cloning of a human neuroD from a neuroblastoma cell line specifically expressed in the fetal brain and adult cerebellum.
    Yokoyama M; Nishi Y; Miyamoto Y; Nakamura M; Akiyama K; Matsubara K; Okubo K
    Brain Res Mol Brain Res; 1996 Nov; 42(1):135-9. PubMed ID: 8915591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specification of neurotransmitter receptor identity in developing retina: the chick ATH5 promoter integrates the positive and negative effects of several bHLH proteins.
    Matter-Sadzinski L; Matter JM; Ong MT; Hernandez J; Ballivet M
    Development; 2001 Jan; 128(2):217-31. PubMed ID: 11124117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.