BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 9740128)

  • 1. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA.
    Ooi SL; Samarsky DA; Fournier MJ; Boeke JD
    RNA; 1998 Sep; 4(9):1096-110. PubMed ID: 9740128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation.
    Nam K; Lee G; Trambley J; Devine SE; Boeke JD
    Mol Cell Biol; 1997 Feb; 17(2):809-18. PubMed ID: 9001235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components.
    Petfalski E; Dandekar T; Henry Y; Tollervey D
    Mol Cell Biol; 1998 Mar; 18(3):1181-9. PubMed ID: 9488433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae.
    Villa T; Ceradini F; Bozzoni I
    Mol Cell Biol; 2000 Feb; 20(4):1311-20. PubMed ID: 10648617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.
    Qu LH; Henras A; Lu YJ; Zhou H; Zhou WX; Zhu YQ; Zhao J; Henry Y; Caizergues-Ferrer M; Bachellerie JP
    Mol Cell Biol; 1999 Feb; 19(2):1144-58. PubMed ID: 9891049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
    Ghazal G; Ge D; Gervais-Bird J; Gagnon J; Abou Elela S
    Mol Cell Biol; 2005 Apr; 25(8):2981-94. PubMed ID: 15798187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA.
    Qu LH; Henry Y; Nicoloso M; Michot B; Azum MC; Renalier MH; Caizergues-Ferrer M; Bachellerie JP
    Nucleic Acids Res; 1995 Jul; 23(14):2669-76. PubMed ID: 7651828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the gene encoding yeast debranching enzyme.
    Chapman KB; Boeke JD
    Cell; 1991 May; 65(3):483-92. PubMed ID: 1850323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between RNA lariat debranching and Ty1 element retrotransposition.
    Salem LA; Boucher CL; Menees TM
    J Virol; 2003 Dec; 77(23):12795-806. PubMed ID: 14610201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre-snoRNAs.
    Leader DJ; Clark GP; Watters J; Beven AF; Shaw PJ; Brown JW
    EMBO J; 1997 Sep; 16(18):5742-51. PubMed ID: 9312032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A homolog of lariat-debranching enzyme modulates turnover of branched RNA.
    Garrey SM; Katolik A; Prekeris M; Li X; York K; Bernards S; Fields S; Zhao R; Damha MJ; Hesselberth JR
    RNA; 2014 Aug; 20(8):1337-48. PubMed ID: 24919400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA.
    Ni J; Tien AL; Fournier MJ
    Cell; 1997 May; 89(4):565-73. PubMed ID: 9160748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA.
    Caffarelli E; Fatica A; Prislei S; De Gregorio E; Fragapane P; Bozzoni I
    EMBO J; 1996 Mar; 15(5):1121-31. PubMed ID: 8605882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs.
    Talross GJS; Deryusheva S; Gall JG
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34725166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of intron-encoded box C/D small nucleolar RNAs lacking a 5',3'-terminal stem structure.
    Darzacq X; Kiss T
    Mol Cell Biol; 2000 Jul; 20(13):4522-31. PubMed ID: 10848579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast snoRNA accumulation relies on a cleavage-dependent/polyadenylation-independent 3'-processing apparatus.
    Fatica A; Morlando M; Bozzoni I
    EMBO J; 2000 Nov; 19(22):6218-29. PubMed ID: 11080167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of endonucleolytic cleavage and exonucleolytic digestion in the 5'-end processing of S. cerevisiae box C/D snoRNAs.
    Lee CY; Lee A; Chanfreau G
    RNA; 2003 Nov; 9(11):1362-70. PubMed ID: 14561886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA.
    Faber AW; Vos JC; Vos HR; Ghazal G; Elela SA; Raué HA
    RNA; 2004 Dec; 10(12):1946-56. PubMed ID: 15525710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities.
    Villa T; Ceradini F; Presutti C; Bozzoni I
    Mol Cell Biol; 1998 Jun; 18(6):3376-83. PubMed ID: 9584178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.