These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 9740399)

  • 1. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo.
    Gao TM; Pulsinelli WA; Xu ZC
    Neuroscience; 1998 Nov; 87(2):371-83. PubMed ID: 9740399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo.
    Gao TM; Pulsinelli WA; Xu ZC
    Neuroscience; 1999 Mar; 90(3):771-80. PubMed ID: 10218778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study.
    Xu ZC; Pulsinelli WA
    J Neurophysiol; 1996 Sep; 76(3):1689-97. PubMed ID: 8890285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo.
    Gao TM; Howard EM; Xu ZC
    J Neurophysiol; 1998 Dec; 80(6):2860-9. PubMed ID: 9862890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential changes of synaptic transmission in spiny neurons of rat neostriatum following transient forebrain ischemia.
    Gajendiran M; Ling GY; Pang Z; Xu ZC
    Neuroscience; 2001; 105(1):139-52. PubMed ID: 11483308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo demonstration of a late depolarizing postsynaptic potential in CA1 pyramidal neurons.
    Fan Y; Zou B; Ruan Y; Pang Z; Xu ZC
    J Neurophysiol; 2005 Mar; 93(3):1326-35. PubMed ID: 15483066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo intracellular demonstration of an ischemia-induced postsynaptic potential from CA1 pyramidal neurons in rat hippocampus.
    Gao TM; Xu ZC
    Neuroscience; 1996 Dec; 75(3):665-9. PubMed ID: 8951862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetrical changes of excitatory synaptic transmission in dopamine-denervated striatum after transient forebrain ischemia.
    Pang ZP; Ling GY; Gajendiran M; Xu ZC
    Neuroscience; 2002; 114(2):317-26. PubMed ID: 12204201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological changes of CA3 neurons and dentate granule cells following transient forebrain ischemia.
    Howard EM; Gao TM; Pulsinelli WA; Xu ZC
    Brain Res; 1998 Jul; 798(1-2):109-18. PubMed ID: 9666096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient enhancement of inhibitory synaptic transmission in hippocampal CA1 pyramidal neurons after cerebral ischemia.
    Liang R; Pang ZP; Deng P; Xu ZC
    Neuroscience; 2009 May; 160(2):412-8. PubMed ID: 19258028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage.
    Andiné P; Jacobson I; Hagberg H
    J Cereb Blood Flow Metab; 1992 Sep; 12(5):773-83. PubMed ID: 1324252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein kinase C in modulation of excitability of CA1 pyramidal neurons in the rat.
    Grabauskas G; Chapman H; Wheal HV
    Neuroscience; 2006; 139(4):1301-13. PubMed ID: 16533575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological recordings from rat hippocampus slices following in vivo brain ischemia.
    Jensen MS; Lambert JD; Johansen FF
    Brain Res; 1991 Jul; 554(1-2):166-75. PubMed ID: 1657285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of GABA-mediated inhibitory postsynaptic potentials in hippocampal CA1 pyramidal neurons following oral flurazepam administration.
    Zeng X; Xie XH; Tietz EI
    Neuroscience; 1995 May; 66(1):87-99. PubMed ID: 7637878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.
    Menendez de la Prida L; Sanchez-Andres JV
    Neuroscience; 2000; 97(2):227-41. PubMed ID: 10799755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible attenuation of glutamatergic transmission in hippocampal CA1 neurons of rat brain slices following transient cerebral ischemia.
    Zhang L; Zhang Y; Tian GF; Wallace MC; Eubanks JH
    Brain Res; 1999 Jun; 832(1-2):31-9. PubMed ID: 10375649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia.
    Zhan RZ; Nadler JV; Schwartz-Bloom RD
    J Cereb Blood Flow Metab; 2006 Jan; 26(1):112-24. PubMed ID: 15959457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling.
    Deuchars J; Thomson AM
    Neuroscience; 1996 Oct; 74(4):1009-18. PubMed ID: 8895869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.