BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 9740736)

  • 1. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.
    Livshits VA; Páli T; Marsh D
    J Magn Reson; 1998 Sep; 134(1):113-23. PubMed ID: 9740736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals: rotational motion effects.
    Livshits VA; Marsh D
    J Magn Reson; 2000 Jul; 145(1):84-94. PubMed ID: 10873499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation time determinations by progressive saturation EPR: effects of molecular motion and Zeeman modulation for spin labels.
    Livshits VA; Páli T; Marsh D
    J Magn Reson; 1998 Jul; 133(1):79-91. PubMed ID: 9654471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of T1-spin-lattice relaxation time in a two-level system by continuous wave multiquantum electron paramagnetic resonance spectroscopy in a presence of tetrachromatic microwave irradiation.
    Dutka M; Gurbiel RJ; Kozioł J; Froncisz W
    J Magn Reson; 2004 Oct; 170(2):220-7. PubMed ID: 15388084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation of Zeeman modulation as a signal filter.
    Nielsen RD; Hustedt EJ; Beth AH; Robinson BH
    J Magn Reson; 2004 Oct; 170(2):345-71. PubMed ID: 15388099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the out-of-phase absorption mode to separating overlapping EPR signals with different T1 values.
    Livshits VA; Marsh D
    J Magn Reson; 2005 Aug; 175(2):317-29. PubMed ID: 15946873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of relaxation enhancement of spin labels in membranes by paramagnetic ion salts: dependence on 3d and 4f ions and on the anions.
    Livshits VA; Dzikovski BG; Marsh D
    J Magn Reson; 2001 Feb; 148(2):221-37. PubMed ID: 11237628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic motion effects in CW non-linear EPR spectra: relaxation enhancement of lipid spin labels.
    Livshits VA; Dzikovski BG; Marsh D
    J Magn Reson; 2003 Jun; 162(2):429-42. PubMed ID: 12810029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low microwave-amplitude ESR spectroscopy: measuring spin-relaxation interactions of moderately immobilized spin labels in proteins.
    Hedin EM; Hult K; Mouritsen OG; Høyrup P
    J Biochem Biophys Methods; 2004 Aug; 60(2):117-38. PubMed ID: 15262447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation filtered hyperfine (REFINE) spectroscopy: a novel tool for studying overlapping biological electron paramagnetic resonance signals applied to mitochondrial complex I.
    Maly T; MacMillan F; Zwicker K; Kashani-Poor N; Brandt U; Prisner TF
    Biochemistry; 2004 Apr; 43(13):3969-78. PubMed ID: 15049704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid binding sites of serum albumin probed by non-linear spin-label EPR.
    Livshits VA; Marsh D
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):350-60. PubMed ID: 10825455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of Saturation-Transfer EPR Intensities on Spin-Lattice Relaxation.
    Pali T; Livshits VA; Marsh D
    J Magn Reson B; 1996 Nov; 113(2):151-9. PubMed ID: 8954900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies on membrane proteins using non-linear spin label EPR spectroscopy.
    Páli T; Marsh D
    Cell Mol Biol Lett; 2002; 7(1):87-91. PubMed ID: 11944054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels.
    Nielsen RD; Canaan S; Gladden JA; Gelb MH; Mailer C; Robinson BH
    J Magn Reson; 2004 Jul; 169(1):129-63. PubMed ID: 15183364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the possible manifestation of harmonic-anharmonic dynamical transition in glassy media in electron paramagnetic resonance of nitroxide spin probes.
    Dzuba SA; Kirilina EP; Salnikov ES
    J Chem Phys; 2006 Aug; 125(5):054502. PubMed ID: 16942221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explanation of spin-lattice relaxation rates of spin labels obtained with multifrequency saturation recovery EPR.
    Mailer C; Nielsen RD; Robinson BH
    J Phys Chem A; 2005 May; 109(18):4049-61. PubMed ID: 16833727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linewidth analysis of spin labels in liquids. I. Theory and data analysis.
    Robinson BH; Mailer C; Reese AW
    J Magn Reson; 1999 Jun; 138(2):199-209. PubMed ID: 10341123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.
    Subczynski WK; Widomska J; Wisniewska A; Kusumi A
    Methods Mol Biol; 2007; 398():143-57. PubMed ID: 18214379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz.
    Mangels ML; Harper AC; Smirnov AI; Howard KP; Lorigan GA
    J Magn Reson; 2001 Aug; 151(2):253-9. PubMed ID: 11531347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.