These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9740742)

  • 21. Line narrowing in methyl-TROSY using zero-quantum 1H-13C NMR spectroscopy.
    Tugarinov V; Sprangers R; Kay LE
    J Am Chem Soc; 2004 Apr; 126(15):4921-5. PubMed ID: 15080697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2CALIS doubling the sensitivity of CALIS for calibration of the rf field strength for indirectly observed nuclei.
    Benie AJ; Sørensen OW
    J Magn Reson; 2006 Oct; 182(2):348-52. PubMed ID: 16875853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interlaced Fourier transformation of ultrafast 2D NMR data.
    Mishkovsky M; Frydman L
    J Magn Reson; 2005 Apr; 173(2):344-50. PubMed ID: 15780928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-swept HSQC sequences for high-throughput NMR analysis.
    Spitzer TD; Rutkowske RD; Dorsey GF
    Magn Reson Chem; 2008 Jun; 46(6):564-70. PubMed ID: 18389496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective HOESY experiments for stereochemical determinations.
    Yemloul M; Bouguet-Bonnet S; Ba LA; Kirsch G; Canet D
    Magn Reson Chem; 2008 Oct; 46(10):939-42. PubMed ID: 18683157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition.
    Tugarinov V; Kay LE; Ibraghimov I; Orekhov VY
    J Am Chem Soc; 2005 Mar; 127(8):2767-75. PubMed ID: 15725035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TROSY-based NMR experiments for the study of macromolecular dynamics and hydrogen bonding.
    Zhu G; Xia Y; Lin D; Gao X
    Methods Mol Biol; 2004; 278():161-84. PubMed ID: 15317997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity-enhanced sim-CT HMQC PFG-HBHA(CO)NH and PFG-CBCA(CO)NH triple-resonance experiments.
    Swapna GV; Montelione GT
    J Magn Reson; 1999 Apr; 137(2):437-42. PubMed ID: 10089179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins.
    Orekhov VY; Korzhnev DM; Kay LE
    J Am Chem Soc; 2004 Feb; 126(6):1886-91. PubMed ID: 14871121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resolution enhancement in multidimensional solid-state NMR spectroscopy of proteins using spin-state selection.
    Duma L; Hediger S; Brutscher B; Böckmann A; Emsley L
    J Am Chem Soc; 2003 Oct; 125(39):11816-7. PubMed ID: 14505393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-edited 2D HSQC-TOCSY experiments for the measurement of homonuclear and heteronuclear coupling constants: application to carbohydrates and peptides.
    Nolis P; Parella T
    J Magn Reson; 2005 Sep; 176(1):15-26. PubMed ID: 15946875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general scheme for suppression of ABX strong coupling signals in heteronuclear scalar and dipolar correlation experiments.
    Kövér KE; Batta G
    J Magn Reson; 1999 May; 138(1):89-97. PubMed ID: 10329230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HACACO revisited: residual dipolar coupling measurements and resonance assignments in proteins.
    Cicero DO; Contessa GM; Paci M; Bazzo R
    J Magn Reson; 2006 Jun; 180(2):222-8. PubMed ID: 16554181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sub-second 2D NMR spectroscopy at sub-millimolar concentrations.
    Shapira B; Morris E; Muszkat KA; Frydman L
    J Am Chem Soc; 2004 Sep; 126(38):11756-7. PubMed ID: 15382886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes.
    Tugarinov V; Hwang PM; Ollerenshaw JE; Kay LE
    J Am Chem Soc; 2003 Aug; 125(34):10420-8. PubMed ID: 12926967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of the steady-state magnetization in TROSY experiments.
    Riek R
    J Biomol NMR; 2001 Oct; 21(2):99-105. PubMed ID: 11727990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A double TROSY hNCAnH experiment for efficient assignment of large and challenging proteins.
    Frueh DP; Arthanari H; Koglin A; Walsh CT; Wagner G
    J Am Chem Soc; 2009 Sep; 131(36):12880-1. PubMed ID: 19702261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional consequences of engineering the high alkaline serine protease PB92.
    van der Laan JM; Misset O; Mulleners LJ; Gerritse G; Scheffers HN; van Schouwen DJ; Teplyakov AV; Dijkstra BW
    Adv Exp Med Biol; 1996; 379():203-18. PubMed ID: 8796325
    [No Abstract]   [Full Text] [Related]  

  • 39. The immune-evasive proline-283 substitution in influenza nucleoprotein increases aggregation propensity without altering the native structure.
    Yoon J; Zhang YM; Her C; Grant RA; Ponomarenko AI; Ackermann BE; Hui T; Lin YS; Debelouchina GT; Shoulders MD
    Sci Adv; 2024 Apr; 10(16):eadl6144. PubMed ID: 38640233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural mechanism of a drug-binding process involving a large conformational change of the protein target.
    Ayaz P; Lyczek A; Paung Y; Mingione VR; Iacob RE; de Waal PW; Engen JR; Seeliger MA; Shan Y; Shaw DE
    Nat Commun; 2023 Apr; 14(1):1885. PubMed ID: 37019905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.