These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9741088)

  • 1. Conditions that induce Staphylococcus aureus heat shock proteins also inhibit autolysis.
    Qoronfleh MW; Gustafson JE; Wilkinson BJ
    FEMS Microbiol Lett; 1998 Sep; 166(1):103-7. PubMed ID: 9741088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of growth of methicillin-resistant and -susceptible Staphylococcus aureus in the presence of beta-lactams on peptidoglycan structure and susceptibility to lytic enzymes.
    Qoronfleh MW; Wilkinson BJ
    Antimicrob Agents Chemother; 1986 Feb; 29(2):250-7. PubMed ID: 2872855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oxacillin and tetracycline on autolysis, autolysin processing and atl transcription in Staphylococcus aureus.
    Ledala N; Wilkinson BJ; Jayaswal RK
    Int J Antimicrob Agents; 2006 Jun; 27(6):518-24. PubMed ID: 16707247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of Staphylococcus aureus to Targocil Blocks Translocation of the Major Autolysin Atl across the Membrane, Resulting in a Significant Decrease in Autolysis.
    Tiwari KB; Gatto C; Walker S; Wilkinson BJ
    Antimicrob Agents Chemother; 2018 Jul; 62(7):. PubMed ID: 29735561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower autolytic activity in a homogeneous methicillin-resistant Staphylococcus aureus strain compared to derived heterogeneous-resistant and susceptible strains.
    Gustafson JE; Wilkinson BJ
    FEMS Microbiol Lett; 1989 May; 50(1-2):107-11. PubMed ID: 2544481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of autolysis by synthetic peptides derived from the presumptive binding domain of Staphylococcus aureus autolysin.
    Takano M; Oshida T; Yasojima A; Yamada M; Okagaki C; Sugai M; Suginaka H; Matsushita T
    Microbiol Immunol; 2000; 44(6):463-72. PubMed ID: 10941929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triton X-100 alters the resistance level of methicillin-resistant Staphylococcus aureus to oxacillin.
    Komatsuzawa H; Sugai M; Shirai C; Suzuki J; Hiramatsu K; Suginaka H
    FEMS Microbiol Lett; 1995 Dec; 134(2-3):209-12. PubMed ID: 8586269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus aureus produces autolysin-susceptible cell walls during growth in a high-NaCl and low-Ca2+ concentration medium.
    Ochiai T
    Microbiol Immunol; 2000; 44(2):97-104. PubMed ID: 10803496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autolysis of methicillin-resistant and -susceptible Staphylococcus aureus.
    Gustafson JE; Berger-Bächi B; Strässle A; Wilkinson BJ
    Antimicrob Agents Chemother; 1992 Mar; 36(3):566-72. PubMed ID: 1320363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of bacterial cell walls: correlation between autolytic activity and cell wall turnover in Staphylococcus aureus.
    Wong W; Chatterjee AN; Young FE
    J Bacteriol; 1978 May; 134(2):555-61. PubMed ID: 659360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus.
    Manna AC; Ingavale SS; Maloney M; van Wamel W; Cheung AL
    J Bacteriol; 2004 Aug; 186(16):5267-80. PubMed ID: 15292128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus.
    Singh VK; Utaida S; Jackson LS; Jayaswal RK; Wilkinson BJ; Chamberlain NR
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3162-3173. PubMed ID: 17768259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-binding capacity of Staphylococcus aureus wall teichoic acid and its role in controlling autolysin activity.
    Biswas R; Martinez RE; Göhring N; Schlag M; Josten M; Xia G; Hegler F; Gekeler C; Gleske AK; Götz F; Sahl HG; Kappler A; Peschel A
    PLoS One; 2012; 7(7):e41415. PubMed ID: 22911791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic and functional analysis of an autolysis-deficient, teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus.
    Renzoni A; Barras C; François P; Charbonnier Y; Huggler E; Garzoni C; Kelley WL; Majcherczyk P; Schrenzel J; Lew DP; Vaudaux P
    Antimicrob Agents Chemother; 2006 Sep; 50(9):3048-61. PubMed ID: 16940101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus.
    Koehl JL; Muthaiyan A; Jayaswal RK; Ehlert K; Labischinski H; Wilkinson BJ
    Antimicrob Agents Chemother; 2004 Oct; 48(10):3749-57. PubMed ID: 15388430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325.
    Chu X; Xia R; He N; Fang Y
    Res Microbiol; 2013 Sep; 164(7):695-700. PubMed ID: 23774059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of resistant mutants to study the interaction of triton X-100 with Staphylococcus aureus.
    Raychaudhuri D; Chatterjee AN
    J Bacteriol; 1985 Dec; 164(3):1337-49. PubMed ID: 2866176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus.
    Liu G; Xiang H; Tang X; Zhang K; Wu X; Wang X; Guo N; Feng H; Wang G; Liu L; Shi Q; Shen F; Xing M; Yuan P; Liu M; Yu L
    Molecules; 2011 Oct; 16(10):8848-65. PubMed ID: 22019573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The autolytic phenotype of the Bacillus cereus group.
    Raddadi N; Cherif A; Mora D; Brusetti L; Borin S; Boudabous A; Daffonchio D
    J Appl Microbiol; 2005; 99(5):1070-81. PubMed ID: 16238737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The major autolysin of Staphylococcus lugdunensis, AtlL, is involved in cell separation, stress-induced autolysis and contributes to bacterial pathogenesis.
    Gibert L; Didi J; Marlinghaus L; Lesouhaitier O; Legris S; Szabados F; Pons JL; Pestel-Caron M
    FEMS Microbiol Lett; 2014 Mar; 352(1):78-86. PubMed ID: 24393327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.