These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 974116)

  • 1. Renaturation of formyltetrahydrofolate synthetase from urea and guanidinium chloride solutions.
    Garrison CK; Harmony JA; Himes RH
    Biochim Biophys Acta; 1976 Sep; 446(1):301-9. PubMed ID: 974116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The monovalent cation-induced association of formyltetrahydrofolate synthetase subunits. Kinetic and thermodynamic aspects.
    Harmony JA; Himes RH
    J Biol Chem; 1975 Oct; 250(20):8049-54. PubMed ID: 1176458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical cross-linking stabilizes the enzymic activity and quaternary structure of formyltetrahydrofolate synthetase.
    de Renobales M; Welch W
    J Biol Chem; 1980 Nov; 255(21):10460-3. PubMed ID: 7430130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of formyltetrahydrofolate synthetase monomers. Kinetic evidence for a temperature-induced conformational change.
    Haslam GC; Himes RH
    Biochim Biophys Acta; 1982 Jan; 700(2):192-7. PubMed ID: 7055578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monovalent cation induced reassociation of formyltetrahydrofolate synthetase monitored by Rayleigh light scattering and enzymic activity.
    de Renobales M; Welch W
    Biochemistry; 1982 Jul; 21(15):3530-7. PubMed ID: 7115685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The monovalent cation-induced association of formyltetrahydrofolate synthetase subunits: a solvent isotope effect.
    Harmony JA; Himes RH; Schowen RL
    Biochemistry; 1975 Dec; 14(24):5379-86. PubMed ID: 1191644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-dependent reassociation of subunits of N10-formyltetrahydrofolate synthetase from Clostridium acidi-urici and Clostridium cylindrosporum.
    MacKenzie RE; Rabinowitz JC
    J Biol Chem; 1971 Jun; 246(11):3731-6. PubMed ID: 5578916
    [No Abstract]   [Full Text] [Related]  

  • 8. Formyltetrahydrofolate synthetase-catalyzed formation of ATP from carbamyl phosphate and ADP. Evidence for a formyl phosphate intermediate in the enzyme's catalytic mechanism.
    Buttlaire DH; Himes RH; Reed GH
    J Biol Chem; 1976 Jul; 251(13):4159-61. PubMed ID: 932026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbamyl phosphate-dependent ATP synthesis catalyzed by formyltetrahydrofolate synthetase.
    Buttlaire DH; Balfe CA; Wendland MF; Himes RH
    Biochim Biophys Acta; 1979 Apr; 567(2):453-63. PubMed ID: 444533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renaturation of yeast inorganic pyrophosphatase denatured in urea and guanidine hydrochloride.
    Yano Y; Irie M
    J Biochem; 1975 Nov; 78(5):1001-11. PubMed ID: 765323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidiurici ("Clostridium acidi-urici").
    Whitehead TR; Rabinowitz JC
    J Bacteriol; 1986 Jul; 167(1):205-9. PubMed ID: 3013834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refolding of glutamate dehydrogenase from Bacillus acidocaldarius after guanidinium chloride-induced unfolding.
    Consalvi V; Millevoi S; Chiaraluce R; de Rosa M; Scandurra R
    Biochem Mol Biol Int; 1995 Feb; 35(2):397-407. PubMed ID: 7663395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The denaturation-renaturation of chicken-muscle triosephosphate isomerase in guanidinium chloride.
    McVittie JD; Esnouf MP; Peacocke AR
    Eur J Biochem; 1977 Dec; 81(2):307-15. PubMed ID: 598372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance relaxation studies of the interaction of ligands with the monomer and tetramer forms of formyltetrahydrofolate synthetase.
    Yeh CH; Hanna DA; Everett GW; Himes RH
    Biochem J; 1988 Apr; 251(1):89-93. PubMed ID: 3390163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion bodies of the thermophilic endoglucanase D from Clostridium thermocellum are made of native enzyme that resists 8 M urea.
    Chaffotte AF; Guillou Y; Goldberg ME
    Eur J Biochem; 1992 Apr; 205(1):369-73. PubMed ID: 1555596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide stereochemistry in the formyltetrahydrofolate synthetase reaction.
    Mejillano MR; Himes RH
    Biochem Biophys Res Commun; 1986 Sep; 139(3):967-73. PubMed ID: 3490261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for the effect of urea and guanidinium chloride on the dynamics of unfolded polypeptide chains.
    Möglich A; Krieger F; Kiefhaber T
    J Mol Biol; 2005 Jan; 345(1):153-62. PubMed ID: 15567418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence of the Clostridium acidiurici ("Clostridium acidi-urici") gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae.
    Whitehead TR; Rabinowitz JC
    J Bacteriol; 1988 Jul; 170(7):3255-61. PubMed ID: 2838464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the mechanism of formyltetrahydrofolate synthetase. The Peptococcus aerogenes enzyme.
    McGuire JJ; Rabinowitz JC
    J Biol Chem; 1978 Feb; 253(4):1079-85. PubMed ID: 624720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical, physical and enzymatic comparisons of formyltetrahydrofolate synthetases from thermo- and mesophilic Clostridia.
    O'brien WE; Brewer JM; Ljungdahl LG
    Experientia Suppl; 1976; 26():249-62. PubMed ID: 939274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.