BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 9741432)

  • 1. Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells.
    Yao F; Svensjö T; Winkler T; Lu M; Eriksson C; Eriksson E
    Hum Gene Ther; 1998 Sep; 9(13):1939-50. PubMed ID: 9741432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systemic and localized reversible regulation of transgene expression by tetracycline with tetR-mediated transcription repression switch.
    Yao F; Pomahac B; Visovatti S; Chen M; Johnson S; Augustinova H; Svensjo T; Eriksson E
    J Surg Res; 2007 Apr; 138(2):267-74. PubMed ID: 17254606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and in vitro characterization of a single regulatory module for efficient control of gene expression in both plasmid DNA and a self-inactivating lentiviral vector.
    Ogueta SB; Yao F; Marasco WA
    Mol Med; 2001 Aug; 7(8):569-79. PubMed ID: 11591893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel tetracycline-inducible viral replication switch.
    Yao F; Eriksson E
    Hum Gene Ther; 1999 Feb; 10(3):419-27. PubMed ID: 10048394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetracycline repressor-regulated gene repression in recombinant human cytomegalovirus.
    Kim HJ; Gatz C; Hillen W; Jones TR
    J Virol; 1995 Apr; 69(4):2565-73. PubMed ID: 7884907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient regulation of gene expression by tetracycline in a replication-defective herpes simplex viral vector.
    Yao F; Theopold C; Hoeller D; Bleiziffer O; Lu Z
    Mol Ther; 2006 Jun; 13(6):1133-41. PubMed ID: 16574491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of action of a herpes virus VP16/tetracycline-dependent trans-activator in mammalian cell cultures.
    Magalini A; Ferrari F; Savoldi G; Ingrassia R; Albertini A; Pollio G; Patrone C; Maggi A; Di Lorenzo D
    DNA Cell Biol; 1995 Aug; 14(8):665-71. PubMed ID: 7646813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetracycline-reversible silencing of eukaryotic promoters.
    Deuschle U; Meyer WK; Thiesen HJ
    Mol Cell Biol; 1995 Apr; 15(4):1907-14. PubMed ID: 7891684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetracycline-inducible expression systems with reduced basal activity in mammalian cells.
    Forster K; Helbl V; Lederer T; Urlinger S; Wittenburg N; Hillen W
    Nucleic Acids Res; 1999 Jan; 27(2):708-10. PubMed ID: 9863002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tight control of transcription in Toxoplasma gondii using an alternative tet repressor.
    van Poppel NF; Welagen J; Duisters RF; Vermeulen AN; Schaap D
    Int J Parasitol; 2006 Apr; 36(4):443-52. PubMed ID: 16516216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional expression of vaccinia virus genes in mammalian cell lines expressing the tetracycline repressor.
    Hedengren-Olcott M; Hruby DE
    J Virol Methods; 2004 Sep; 120(1):9-12. PubMed ID: 15234804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible gene expression using an autoregulatory, tetracycline-controlled system.
    Shockett P; Schatz D
    Curr Protoc Mol Biol; 2002 Nov; Chapter 16():Unit 16.14. PubMed ID: 18265300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco.
    Gatz C; Kaiser A; Wendenburg R
    Mol Gen Genet; 1991 Jun; 227(2):229-37. PubMed ID: 2062303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of tetracycline-responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells.
    Jones J; Nivitchanyong T; Giblin C; Ciccarone V; Judd D; Gorfien S; Krag SS; Betenbaugh MJ
    Biotechnol Bioeng; 2005 Sep; 91(6):722-32. PubMed ID: 15981277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells.
    Freundlieb S; Schirra-Müller C; Bujard H
    J Gene Med; 1999; 1(1):4-12. PubMed ID: 10738580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system.
    Orth P; Schnappinger D; Hillen W; Saenger W; Hinrichs W
    Nat Struct Biol; 2000 Mar; 7(3):215-9. PubMed ID: 10700280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying expression of Tn10 encoded tetracycline resistance.
    Hillen W; Berens C
    Annu Rev Microbiol; 1994; 48():345-69. PubMed ID: 7826010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain.
    Uchida S; Sakai S; Furuichi T; Hosoda H; Toyota K; Ishii T; Kitamoto A; Sekine M; Koike K; Masushige S; Murphy G; Silva AJ; Kida S
    Genes Brain Behav; 2006 Feb; 5(1):96-106. PubMed ID: 16436193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Codon optimization, genetic insulation, and an rtTA reporter improve performance of the tetracycline switch.
    Wells KD; Foster JA; Moore K; Pursel VG; Wall RJ
    Transgenic Res; 1999 Oct; 8(5):371-81. PubMed ID: 10669945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-directional gene switching with the tetracycline repressor and a novel tetracycline antagonist.
    Chrast-Balz J; Hooft van Huijsduijnen R
    Nucleic Acids Res; 1996 Aug; 24(15):2900-4. PubMed ID: 8760871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.