These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 9741842)
41. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Baker HM; He QY; Briggs SK; Mason AB; Baker EN Biochemistry; 2003 Jun; 42(23):7084-9. PubMed ID: 12795604 [TBL] [Abstract][Full Text] [Related]
42. Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. Kamitori S; Kondo S; Okuyama K; Yokota T; Shimura Y; Tonozuka T; Sakano Y J Mol Biol; 1999 Apr; 287(5):907-21. PubMed ID: 10222200 [TBL] [Abstract][Full Text] [Related]
43. Structural and conformational properties of (Z)-beta-(1-naphthyl)- dehydroalanine residue. Inai Y; Oshikawa T; Yamashita M; Hirabayashi T; Hirako T Biopolymers; 2001 Jan; 58(1):9-19. PubMed ID: 11072225 [TBL] [Abstract][Full Text] [Related]
44. Conformational study of a putative HLTV-1 retroviral protease inhibitor. Llido S; d'Estaintot BL; Dautant A; Geoffre S; Picard P; Precigoux G Acta Crystallogr D Biol Crystallogr; 1993 May; 49(Pt 3):344-8. PubMed ID: 15299523 [TBL] [Abstract][Full Text] [Related]
45. Altered domain closure and iron binding in transferrins: the crystal structure of the Asp60Ser mutant of the amino-terminal half-molecule of human lactoferrin. Faber HR; Bland T; Day CL; Norris GE; Tweedie JW; Baker EN J Mol Biol; 1996 Feb; 256(2):352-63. PubMed ID: 8594202 [TBL] [Abstract][Full Text] [Related]
46. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3. Yoshimune K; Shirakihara Y; Shiratori A; Wakayama M; Chantawannakul P; Moriguchi M Biochem Biophys Res Commun; 2006 Aug; 346(4):1118-24. PubMed ID: 16793004 [TBL] [Abstract][Full Text] [Related]
47. Crystal structure and iron-binding properties of the R210K mutant of the N-lobe of human lactoferrin: implications for iron release from transferrins. Peterson NA; Anderson BF; Jameson GB; Tweedie JW; Baker EN Biochemistry; 2000 Jun; 39(22):6625-33. PubMed ID: 10828980 [TBL] [Abstract][Full Text] [Related]
48. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612 [TBL] [Abstract][Full Text] [Related]
49. Contribution of peptide bonds to inhibitor-protease binding: crystal structures of the turkey ovomucoid third domain backbone variants OMTKY3-Pro18I and OMTKY3-psi[COO]-Leu18I in complex with Streptomyces griseus proteinase B (SGPB) and the structure of the free inhibitor, OMTKY-3-psi[CH2NH2+]-Asp19I. Bateman KS; Huang K; Anderson S; Lu W; Qasim MA; Laskowski M; James MN J Mol Biol; 2001 Jan; 305(4):839-49. PubMed ID: 11162096 [TBL] [Abstract][Full Text] [Related]
50. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393 [TBL] [Abstract][Full Text] [Related]
51. The immunosuppressive mini-domain of human lactoferrin. Siemion IZ; Sloń J; Wieczorek Z J Pept Sci; 1995; 1(5):295-302. PubMed ID: 9223008 [TBL] [Abstract][Full Text] [Related]
52. Lactoferrin-melanin interaction and its possible implications in melanin polymerization: crystal structure of the complex formed between mare lactoferrin and melanin monomers at 2.7-A resolution. Sharma AK; Kumar S; Sharma V; Nagpal A; Singh N; Tamboli I; Mani I; Raman G; Singh TP Proteins; 2001 Nov; 45(3):229-36. PubMed ID: 11599026 [TBL] [Abstract][Full Text] [Related]
53. Structurally intact (78-kDa) forms of maternal lactoferrin purified from urine of preterm infants fed human milk: identification of a trypsin-like proteolytic cleavage event in vivo that does not result in fragment dissociation. Hutchens TW; Henry JF; Yip TT Proc Natl Acad Sci U S A; 1991 Apr; 88(8):2994-8. PubMed ID: 2014220 [TBL] [Abstract][Full Text] [Related]
54. Structure of buffalo lactoferrin at 2.5 A resolution using crystals grown at 303 K shows different orientations of the N and C lobes. Karthikeyan S; Paramasivam M; Yadav S; Srinivasan A; Singh TP Acta Crystallogr D Biol Crystallogr; 1999 Nov; 55(Pt 11):1805-13. PubMed ID: 10531476 [TBL] [Abstract][Full Text] [Related]
55. Protein intermediate trapped by the simultaneous crystallization process. Crystal structure of an iron-saturated intermediate in the Fe3+ binding pathway of camel lactoferrin at 2.7 a resolution. Khan JA; Kumar P; Srinivasan A; Singh TP J Biol Chem; 2001 Sep; 276(39):36817-23. PubMed ID: 11473113 [TBL] [Abstract][Full Text] [Related]
56. Amino acids and peptides. XV. Synthesis of Gln-Val-Val-Ala-Gly and derivatives, a common sequence of thiol proteinase inhibitors and their effects on thiol proteinase. Teno N; Tsuboi S; Okada Y; Itoh N; Okamoto H Int J Pept Protein Res; 1987 Jul; 30(1):93-8. PubMed ID: 3667080 [TBL] [Abstract][Full Text] [Related]
57. The three-dimensional structure of the complex of proteinase K with its naturally occurring protein inhibitor, PKI3. Pal GP; Kavounis CA; Jany KD; Tsernoglou D FEBS Lett; 1994 Mar; 341(2-3):167-70. PubMed ID: 8137934 [TBL] [Abstract][Full Text] [Related]
58. Structural and conformational studies on bio-active flavonoids. Crystal and molecular structure of a complex formed between 2',6'-dimethoxyflavone and orthophosphoric acid: a model for flavone-nucleotide interactions. Wallet JC; Cody V; Wojtczak A; Blessing RH Anticancer Drug Des; 1993 Oct; 8(5):325-32. PubMed ID: 8251040 [TBL] [Abstract][Full Text] [Related]
59. Structure of iron saturated C-lobe of bovine lactoferrin at pH 6.8 indicates a weakening of iron coordination. Rastogi N; Singh A; Singh PK; Tyagi TK; Pandey S; Shin K; Kaur P; Sharma S; Singh TP Proteins; 2016 May; 84(5):591-9. PubMed ID: 26850578 [TBL] [Abstract][Full Text] [Related]
60. Structure of a domain-opened mutant (R121D) of the human lactoferrin N-lobe refined from a merohedrally twinned crystal form. Jameson GB; Anderson BF; Breyer WA; Day CL; Tweedie JW; Baker EN Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):955-62. PubMed ID: 12037297 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]