These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9741928)

  • 1. Biological response to a synthetic cornea.
    Trinkaus-Randall V; Nugent MA
    J Control Release; 1998 Apr; 53(1-3):205-14. PubMed ID: 9741928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo comparison of three different porous materials intended for use in a keratoprosthesis.
    Wu XY; Tsuk A; Leibowitz HM; Trinkaus-Randall V
    Br J Ophthalmol; 1998 May; 82(5):569-76. PubMed ID: 9713067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implantation of a synthetic cornea: design, development and biological response.
    Trinkaus-Randall V; Wu XY; Tablante R; Tsuk A
    Artif Organs; 1997 Nov; 21(11):1185-91. PubMed ID: 9384324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of stromal glycosaminoglycans in response to injury.
    Brown CT; Applebaum E; Banwatt R; Trinkaus-Randall V
    J Cell Biochem; 1995 Sep; 59(1):57-68. PubMed ID: 8530537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo fibroplasia of a porous polymer in the cornea.
    Trinkaus-Randall V; Banwatt R; Capecchi J; Leibowitz HM; Franzblau C
    Invest Ophthalmol Vis Sci; 1991 Dec; 32(13):3245-51. PubMed ID: 1748554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pretreating porous webs on stromal fibroplasia in vivo.
    Trinkaus-Randall V; Banwatt R; Wu XY; Leibowitz HM; Franzblau C
    J Biomed Mater Res; 1994 Feb; 28(2):195-202. PubMed ID: 8207031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Keratoprosthesis design and biological response to a synthetic cornea].
    Wu X; Trinkaus-Randall V; Tsuk A
    Zhonghua Yan Ke Za Zhi; 2001 Nov; 37(6):462-4. PubMed ID: 11840759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of epithelial debridement on human cornea proteoglycans.
    Soriano ES; Campos MS; Aguiar JA; Michelacci YM
    Braz J Med Biol Res; 2001 Mar; 34(3):325-31. PubMed ID: 11262582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea.
    Zhang YQ; Zhang WJ; Liu W; Hu XJ; Zhou GD; Cui L; Cao Y
    Tissue Eng Part A; 2008 Feb; 14(2):295-303. PubMed ID: 18333782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of neocollagen by cells invading hydrogel sponges implanted in the rabbit cornea.
    Chirila TV; Thompson-Wallis DE; Crawford GJ; Constable IJ; Vijayasekaran S
    Graefes Arch Clin Exp Ophthalmol; 1996 Mar; 234(3):193-8. PubMed ID: 8720719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The expression level of MMP-2 and collagen of hydroxyapatite modified titanium for keratoprosthesis in the corneal stroma of rabbits].
    Yang M; Du GP; Wang LQ; Wang XP; Cui FZ; Lu YJ; Huang YF
    Zhonghua Yan Ke Za Zhi; 2013 Oct; 49(10):914-20. PubMed ID: 24433694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite.
    Fenglan X; Yubao L; Xiaoming Y; Hongbing L; Li Z
    J Mater Sci Mater Med; 2007 Apr; 18(4):635-40. PubMed ID: 17546425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratan sulfate proteoglycan during embryonic development of the chicken cornea.
    Funderburgh JL; Caterson B; Conrad GW
    Dev Biol; 1986 Aug; 116(2):267-77. PubMed ID: 2942429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ePTFE polymer implant permeability on the rate and density of corneal extracellular matrix synthesis.
    Legeais JM; Drubaix I; Briat B; Savoldelli M; Ménasche M; Robert L; Renard G; Pouliquen Y
    J Biomed Mater Res; 1997 Jul; 36(1):49-54. PubMed ID: 9212388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of poly DL-lactide--co-glycolide implants and xenogeneic bone matrix-derived growth factors on calvarial bone repair in the rabbit.
    Meikle MC; Papaioannou S; Ratledge TJ; Speight PM; Watt-Smith SR; Hill PA; Reynolds JJ
    Biomaterials; 1994 Jun; 15(7):513-21. PubMed ID: 7918904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal microscopic characterization of wound repair after photorefractive keratectomy.
    Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of a fluorocarbon polymer implanted at the posterior surface of the rabbit cornea.
    Renard G; Cetinel B; Legeais JM; Savoldelli M; Durand J; Pouliquen Y
    J Biomed Mater Res; 1996 Jun; 31(2):193-9. PubMed ID: 8731207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of matrix metalloproteinases and inhibitor on the cornea tissue in rabbit after implantation of modified titanium skirt for keratoprosthesis].
    Li L; Zhou D; Wang XM; Wang XP; Cui FZ; Lu YJ; Huang YF
    Zhonghua Yan Ke Za Zhi; 2012 Jan; 48(1):20-6. PubMed ID: 22490912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of extracellular matrix-associated glycosaminoglycans produced by untransformed and transformed bovine corneal endothelial cells in culture.
    Wang ZW; Irimura T; Nakajima M; Belloni PN; Nicolson GL
    Eur J Biochem; 1985 Nov; 153(1):125-30. PubMed ID: 2998789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia modulates the development of a corneal stromal matrix model.
    Lee A; Karamichos D; Onochie OE; Hutcheon AEK; Rich CB; Zieske JD; Trinkaus-Randall V
    Exp Eye Res; 2018 May; 170():127-137. PubMed ID: 29496505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.