These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 9742132)

  • 21. Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase.
    Fox CA; Sheets MD; Wahle E; Wickens M
    EMBO J; 1992 Dec; 11(13):5021-32. PubMed ID: 1464324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU.
    Fox CA; Sheets MD; Wickens MP
    Genes Dev; 1989 Dec; 3(12B):2151-62. PubMed ID: 2628165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation.
    Howard EL; Charlesworth A; Welk J; MacNicol AM
    Mol Cell Biol; 1999 Mar; 19(3):1990-9. PubMed ID: 10022886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maturation-specific deadenylation in Xenopus oocytes requires nuclear and cytoplasmic factors.
    Varnum SM; Hurney CA; Wormington WM
    Dev Biol; 1992 Oct; 153(2):283-90. PubMed ID: 1397685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoplasmic mRNA polyadenylation and translation assays.
    Piqué M; López JM; Méndez R
    Methods Mol Biol; 2006; 322():183-98. PubMed ID: 16739724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cap-dependent deadenylation of mRNA.
    Dehlin E; Wormington M; Körner CG; Wahle E
    EMBO J; 2000 Mar; 19(5):1079-86. PubMed ID: 10698948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovery, identification and sequence analysis of RNAs selected for very short or long poly A tail in immature bovine oocytes.
    Gohin M; Fournier E; Dufort I; Sirard MA
    Mol Hum Reprod; 2014 Feb; 20(2):127-38. PubMed ID: 24233545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular basis of coupling between poly(A)-tail length and translational efficiency.
    Xiang K; Bartel DP
    Elife; 2021 Jul; 10():. PubMed ID: 34213414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation.
    Barkoff AF; Dickson KS; Gray NK; Wickens M
    Dev Biol; 2000 Apr; 220(1):97-109. PubMed ID: 10720434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Musashi interaction with poly(A)-binding protein is required for activation of target mRNA translation.
    Cragle CE; MacNicol MC; Byrum SD; Hardy LL; Mackintosh SG; Richardson WA; Gray NK; Childs GV; Tackett AJ; MacNicol AM
    J Biol Chem; 2019 Jul; 294(28):10969-10986. PubMed ID: 31152063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deadenylation negative feedback mechanism governs meiotic metaphase arrest.
    Belloc E; Méndez R
    Nature; 2008 Apr; 452(7190):1017-21. PubMed ID: 18385675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. c-mos and cdc2 cooperate in the translational activation of fibroblast growth factor receptor-1 during Xenopus oocyte maturation.
    Culp PA; Musci TJ
    Mol Biol Cell; 1999 Nov; 10(11):3567-81. PubMed ID: 10564256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae.
    Schwartz DC; Parker R
    Mol Cell Biol; 1999 Aug; 19(8):5247-56. PubMed ID: 10409716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(A)-tail-promoted translation in yeast: implications for translational control.
    Preiss T; Muckenthaler M; Hentze MW
    RNA; 1998 Nov; 4(11):1321-31. PubMed ID: 9814754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element.
    Simon R; Tassan JP; Richter JD
    Genes Dev; 1992 Dec; 6(12B):2580-91. PubMed ID: 1285126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes.
    Charlesworth A; Cox LL; MacNicol AM
    J Biol Chem; 2004 Apr; 279(17):17650-9. PubMed ID: 14752101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring CPEB-mediated cytoplasmic polyadenylation-deadenylation in Xenopus laevis oocytes and egg extracts.
    Kim JH; Richter JD
    Methods Enzymol; 2008; 448():119-38. PubMed ID: 19111174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3' UTR of certain maternal mRNAs.
    Fox CA; Wickens M
    Genes Dev; 1990 Dec; 4(12B):2287-98. PubMed ID: 1980657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free poly(A) stimulates capped mRNA translation in vitro through the eIF4G-poly(A)-binding protein interaction.
    Borman AM; Michel YM; Malnou CE; Kean KM
    J Biol Chem; 2002 Sep; 277(39):36818-24. PubMed ID: 12138105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly (A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development.
    Ballantyne S; Bilger A; Astrom J; Virtanen A; Wickens M
    RNA; 1995 Mar; 1(1):64-78. PubMed ID: 7489490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.