BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 9742172)

  • 1. Evidence that excitatory amino acid receptors within the temporomandibular joint region are involved in the reflex activation of the jaw muscles.
    Cairns BE; Sessle BJ; Hu JW
    J Neurosci; 1998 Oct; 18(19):8056-64. PubMed ID: 9742172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P2X and NMDA receptor involvement in temporomandibular joint-evoked reflex activity in rat jaw muscles.
    Watanabe T; Tsuboi Y; Sessle BJ; Iwata K; Hu JW
    Brain Res; 2010 Jul; 1346():83-91. PubMed ID: 20501327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporomandibular-evoked jaw muscle reflex: role of brain stem NMDA and non-NMDA receptors.
    Cairns BE; Sessle BJ; Hu JW
    Neuroreport; 2001 Jul; 12(9):1875-8. PubMed ID: 11435915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral NMDA receptor modulation of jaw muscle electromyographic activity induced by capsaicin injection into the temporomandibular joint of rats.
    Lam DK; Sessle BJ; Cairns BE; Hu JW
    Brain Res; 2005 Jun; 1046(1-2):68-76. PubMed ID: 15927551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat.
    Zhang J; Mifflin SW
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):733-45. PubMed ID: 9714856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of NMDA receptor mechanisms in jaw electromyographic activity and plasma extravasation induced by inflammatory irritant application to temporomandibular joint region of rats.
    Yu -X; Sessle JB; Haas AD; Izzo A; Vernon H; Hu WJ
    Pain; 1996 Nov; 68(1):169-178. PubMed ID: 9252012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of peripheral GABAA receptors inhibits temporomandibular joint-evoked jaw muscle activity.
    Cairns BE; Sessle BJ; Hu JW
    J Neurophysiol; 1999 Apr; 81(4):1966-9. PubMed ID: 10200231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum.
    Hurst RS; Cepeda C; Shumate LW; Levine MS
    Dev Neurosci; 2001; 23(2):122-34. PubMed ID: 11509835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of competitive NMDA receptor antagonists on excitatory amino acid-evoked currents in mouse spinal cord neurones.
    D'Hooge R; Raes A; Van de Vijver G; Van Bogaert PP; De Deyn PP
    Fundam Clin Pharmacol; 1999; 13(1):67-74. PubMed ID: 10027090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials in rats: an in vivo study.
    Farkas S; Ono H
    Br J Pharmacol; 1995 Mar; 114(6):1193-205. PubMed ID: 7620709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depressor responses to L-proline microinjected into the rat ventrolateral medulla are mediated by ionotropic excitatory amino acid receptors.
    Takemoto Y
    Auton Neurosci; 2005 Jun; 120(1-2):108-12. PubMed ID: 15964784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity.
    Lin SY; Constantine-Paton M
    J Neurosci; 1998 May; 18(10):3725-37. PubMed ID: 9570803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of ionotropic glutamate receptor-mediated nitric oxide production in vivo in rats.
    Bhardwaj A; Northington FJ; Ichord RN; Hanley DF; Traystman RJ; Koehler RC
    Stroke; 1997 Apr; 28(4):850-6; discussion 856-7. PubMed ID: 9099207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Participation of NMDA and kainate receptors of paraventricular nucleus in cardiovascular responses to glutamate receptor agonist.
    Gören MZ; Onat F; Berkman K
    Eur J Pharmacol; 2000 Jan; 388(1):77-84. PubMed ID: 10657549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.
    Metzger F; Kulik A; Sendtner M; Ballanyi K
    J Neurophysiol; 2000 Jan; 83(1):50-9. PubMed ID: 10634852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crucial role of kainate receptors in mediating striatal kainate injection-induced decrease in acetylcholine M(1) receptor binding in rat forebrain.
    Jin S; Yang J; Lee WL; Wong PT
    Brain Res; 2000 Nov; 882(1-2):128-38. PubMed ID: 11056192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of NK-1 and NK-2 tachykinin receptor mechanisms in jaw muscle activity reflexly evoked by inflammatory irritant application to the rat temporomandibular joint.
    Bakke M; Hu JW; Sessle BJ
    Pain; 1998 Apr; 75(2-3):219-27. PubMed ID: 9583757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological evidence for involvement of excitatory amino acids in aversive responses induced by intrathecal substance P in rats.
    Okano K; Kuraishi Y; Satoh M
    Biol Pharm Bull; 1993 Sep; 16(9):861-5. PubMed ID: 7505686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitotoxic death of a subset of embryonic rat motor neurons in vitro.
    Fryer HJ; Knox RJ; Strittmatter SM; Kalb RG
    J Neurochem; 1999 Feb; 72(2):500-13. PubMed ID: 9930721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function.
    Pittaluga A; Bonfanti A; Raiteri M
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Jul; 356(1):29-38. PubMed ID: 9228187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.