These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 974229)

  • 1. Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated closts.
    Nelb GW; Gerth C; Ferry JD
    Biophys Chem; 1976 Sep; 5(3):377-87. PubMed ID: 974229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clots of beta-fibrin. Viscoelastic properties, temperature dependence of elasticity, and interaction with fibrinogen-binding tetrapeptides.
    Shimizu A; Ferry JD
    Biophys J; 1988 Mar; 53(3):311-8. PubMed ID: 3349127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of shear modulus and creep compliance of fibrin clots by fibronectin.
    Kamykowski GW; Mosher DF; Lorand L; Ferry JD
    Biophys Chem; 1981 Feb; 13(1):25-8. PubMed ID: 7260326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fibrinogen-binding tetrapeptides on mechanical properties of fine fibrin clots.
    Bale MD; Müller MF; Ferry JD
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1410-3. PubMed ID: 3856269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. Observations of fibers in cross-section and in deformed states.
    Müller MF; Ris H; Ferry JD
    J Mol Biol; 1984 Apr; 174(2):369-84. PubMed ID: 6716483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain enhancement of elastic modulus in fine fibrin clots.
    Bale MD; Ferry JD
    Thromb Res; 1988 Dec; 52(6):565-72. PubMed ID: 3232126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of fibrin clots. V. Shear modulus, creep, and creep recovery of fine unligated clots.
    Nelb GW; Kamykowski GW; Ferry JD
    Biophys Chem; 1981 Feb; 13(1):15-23. PubMed ID: 7260325
    [No Abstract]   [Full Text] [Related]  

  • 8. Rheological studies of creep and creep recovery of unligated fibrin clots: comparison of clots prepared with thrombin and ancrod.
    Bale MD; Müller MF; Ferry JD
    Biopolymers; 1985 Mar; 24(3):461-82. PubMed ID: 3986291
    [No Abstract]   [Full Text] [Related]  

  • 9. Rheology of fibrin clots. IV. Darcy constants and fiber thickness.
    Rosser RW; Roberts WW; Ferry JD
    Biophys Chem; 1977 Sep; 7(2):153-7. PubMed ID: 20173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factor XIII stiffens fibrin clots by causing fiber compaction.
    Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2014 Oct; 12(10):1687-96. PubMed ID: 25142383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of fibrin oligomers in sonicated fibrin clots.
    Henry F; Nestler M; Ferry JD
    Biophys Chem; 1977 Jan; 6(2):161-5. PubMed ID: 558008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep.
    Gerth C; Roberts WW; Ferry JD
    Biophys Chem; 1974 Oct; 2(3):208-17. PubMed ID: 4474029
    [No Abstract]   [Full Text] [Related]  

  • 14. The elasticity of an individual fibrin fiber in a clot.
    Collet JP; Shuman H; Ledger RE; Lee S; Weisel JW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9133-7. PubMed ID: 15967976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels.
    Badiei N; Sowedan AM; Curtis DJ; Brown MR; Lawrence MJ; Campbell AI; Sabra A; Evans PA; Weisel JW; Chernysh IN; Nagaswami C; Williams PR; Hawkins K
    Clin Hemorheol Microcirc; 2015; 60(4):451-64. PubMed ID: 25624413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of crosslinking on the rigidity and proteolytic susceptibility of human fibrin clots.
    Gladner JA; Nossal R
    Thromb Res; 1983 May; 30(3):273-88. PubMed ID: 6223406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the mechanical, kinetic, and biochemical properties of fibrin clots formed with two different fibrin sealants.
    Hickerson WL; Nur I; Meidler R
    Blood Coagul Fibrinolysis; 2011 Jan; 22(1):19-23. PubMed ID: 21150581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of semi-dilute actin solutions on the mobility of fibrin protofibrils during clot formation.
    Janmey PA; Lind SE; Yin HL; Stossel TP
    Biochim Biophys Acta; 1985 Aug; 841(2):151-8. PubMed ID: 2990570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of plasma fibronectin in determining PFP and PRP clot mechanical properties.
    Chow TW; McIntire LV; Peterson DM
    Thromb Res; 1983 Jan; 29(2):243-8. PubMed ID: 6845279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.
    Acconcia C; Leung BY; Manjunath A; Goertz DE
    Ultrasound Med Biol; 2014 Sep; 40(9):2134-50. PubMed ID: 24882525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.