These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9742455)

  • 1. Comments on the paper by Dr. David Smith entitled "A strain-dependent ratchet model for [phosphate]- and [ATP]-dependent muscle contraction".
    Kawai M
    J Muscle Res Cell Motil; 1998 Aug; 19(6):713-4; discussion 715-6. PubMed ID: 9742455
    [No Abstract]   [Full Text] [Related]  

  • 2. A strain-dependent ratchet model for [phosphate]- and [ATP]-dependent muscle contraction.
    Smith DA
    J Muscle Res Cell Motil; 1998 Feb; 19(2):189-211. PubMed ID: 9536445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemistry of muscle contraction; contraction of muscle without fission of adenosine triphosphate or creatine phosphate.
    FLECKENSTEIN A; JANKE J; DAVIES RE; KREBS HA
    Nature; 1954 Dec; 174(4441):1081-3. PubMed ID: 13214080
    [No Abstract]   [Full Text] [Related]  

  • 4. [Change in the content of ATP, creatine phosphate, inorganic phosphate and lactic acid in skeletal muscle during tetanic contraction].
    Kirzon MB; Manovtseva MA; Livanova TN
    Fiziol Zh SSSR Im I M Sechenova; 1973 Feb; 59(2):276-80. PubMed ID: 4764387
    [No Abstract]   [Full Text] [Related]  

  • 5. Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior.
    Smith DA; Geeves MA
    Biophys J; 1995 Aug; 69(2):538-52. PubMed ID: 8527668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method for the time-resolved measurement of phosphate release in permeabilized muscle fibers.
    Ferenczi MA; He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR
    Biophys J; 1995 Apr; 68(4 Suppl):191S-192S; discussion 192S-193S. PubMed ID: 7787066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthophosphate and the fastest component of the mechanical transient in skinned muscle fibers.
    Horiuti K; Sakoda T
    Biophys J; 1993 Nov; 65(5):2261-4. PubMed ID: 8298049
    [No Abstract]   [Full Text] [Related]  

  • 8. The incorporation of radioactive phosphate into ATP in glycerinated fibres stretched or released during contraction.
    Gillis JM; Maréchal G
    J Mechanochem Cell Motil; 1974; 3(1):55-68. PubMed ID: 4457581
    [No Abstract]   [Full Text] [Related]  

  • 9. The cross-bridge mechanism studied by flash photolysis of caged ATP in skeletal muscle fibers.
    Horiuti K
    Jpn J Physiol; 1997 Oct; 47(5):405-15. PubMed ID: 9504128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect coupling of phosphate release to de novo tension generation during muscle contraction.
    Davis JS; Rodgers ME
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10482-6. PubMed ID: 7479824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The yield of resynthesis of high-energy phosphates (ATP + PC) in the course of anaerobic restoration].
    Ambrosoli G; Cerretelli P
    Boll Soc Ital Biol Sper; 1970 Aug; 46(15):667-8. PubMed ID: 5503228
    [No Abstract]   [Full Text] [Related]  

  • 12. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caged compounds and striated muscle contraction.
    Homsher E; Millar NC
    Annu Rev Physiol; 1990; 52():875-96. PubMed ID: 2139560
    [No Abstract]   [Full Text] [Related]  

  • 14. Coupling of ATP-hydrolysis with contraction of isolated myofibrillar fragments.
    Nakamura H; Mori T; Tonomura Y
    J Biochem; 1965 Dec; 58(6):582-6. PubMed ID: 4222508
    [No Abstract]   [Full Text] [Related]  

  • 15. Tension responses of sheep aorta to simultaneous decreases in phosphocreatine, inorganic phosphate and ATP.
    Hardin CD; Wiseman RW; Kushmerick MJ
    J Physiol; 1992 Dec; 458():139-50. PubMed ID: 1302261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of muscular contraction.
    Mommaerts WF
    Physiol Rev; 1969 Jul; 49(3):427-508. PubMed ID: 4893530
    [No Abstract]   [Full Text] [Related]  

  • 17. Possible role in contraction of structurally bound phosphate of muscle.
    Cheesman DF; Whitehead A
    Nature; 1969 Feb; 221(5182):736-9. PubMed ID: 5766643
    [No Abstract]   [Full Text] [Related]  

  • 18. Muscle contraction.
    Holmes KC
    Novartis Found Symp; 1998; 213():76-89; discussion 89-92. PubMed ID: 9653716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of phosphate compounds in thaw contraction and the mechanism of thaw rigor.
    Kushmerick MJ; Davies RE
    Biochim Biophys Acta; 1968 Jan; 153(1):279-87. PubMed ID: 5638396
    [No Abstract]   [Full Text] [Related]  

  • 20. Normal muscle energy metabolism.
    Kushmerick MJ
    Adv Exp Med Biol; 1984; 178():339-50. PubMed ID: 6542301
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.