These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 9742458)
1. Effect of acarbose (alpha-glucosidase inhibitor) on disaccharase activity in small intestine in KK-Ay and ddY mice. Miura T; Koide T; Ohichi R; Kako M; Usami M; Ishihara E; Yasuda N; Ishida H; Seino Y; Tanigawa K J Nutr Sci Vitaminol (Tokyo); 1998 Jun; 44(3):371-9. PubMed ID: 9742458 [TBL] [Abstract][Full Text] [Related]
2. Short-term effect of acarbose on specific intestinal disaccharidase activities and hyperglycaemia in CBA diabetic mice. Juretić D; Bernik S; Cop L; Hadzija M; Petlevski R; Lukac-Bajalo J J Anim Physiol Anim Nutr (Berl); 2003 Aug; 87(7-8):263-8. PubMed ID: 12864906 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols. Pyner A; Nyambe-Silavwe H; Williamson G J Agric Food Chem; 2017 Oct; 65(39):8643-8651. PubMed ID: 28914528 [TBL] [Abstract][Full Text] [Related]
4. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha- and beta-glucosidases suggesting anti-diabetic potential. Panwar H; Calderwood D; Grant IR; Grover S; Green BD Eur J Nutr; 2014 Oct; 53(7):1465-74. PubMed ID: 24414142 [TBL] [Abstract][Full Text] [Related]
5. Effects of graded alpha-glucosidase inhibition on sugar absorption in vivo. Madariaga H; Lee PC; Heitlinger LA; Lebenthal E Dig Dis Sci; 1988 Aug; 33(8):1020-4. PubMed ID: 3292164 [TBL] [Abstract][Full Text] [Related]
6. The ethanol extract of Eucommia ulmoides Oliv. leaves inhibits disaccharidase and glucose transport in Caco-2 cells. Zhang Y; Zhang H; Wang F; Yang D; Ding K; Fan J J Ethnopharmacol; 2015 Apr; 163():99-105. PubMed ID: 25620383 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of disaccharide digestion in rat intestine by the alpha-glucosidase inhibitor acarbose (BAY g 5421). Krause HP; Keup U; Puls W Digestion; 1982; 23(4):232-8. PubMed ID: 6754513 [TBL] [Abstract][Full Text] [Related]
8. L-arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Seri K; Sanai K; Matsuo N; Kawakubo K; Xue C; Inoue S Metabolism; 1996 Nov; 45(11):1368-74. PubMed ID: 8931641 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370 [TBL] [Abstract][Full Text] [Related]
10. alpha-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. Adisakwattana S; Charoenlertkul P; Yibchok-Anun S J Enzyme Inhib Med Chem; 2009 Feb; 24(1):65-9. PubMed ID: 18615280 [TBL] [Abstract][Full Text] [Related]
11. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Kim SH; Jo SH; Kwon YI; Hwang JK Int J Mol Sci; 2011; 12(6):3757-69. PubMed ID: 21747704 [TBL] [Abstract][Full Text] [Related]
12. Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Matsuo T; Odaka H; Ikeda H Am J Clin Nutr; 1992 Jan; 55(1 Suppl):314S-317S. PubMed ID: 1728846 [TBL] [Abstract][Full Text] [Related]
13. The effect of alpha-glucosidase inhibition on intestinal disaccharidase activity in normal and diabetic mice. Lee SM; Bustamante SA; Koldovský O Metabolism; 1983 Aug; 32(8):793-9. PubMed ID: 6346004 [No Abstract] [Full Text] [Related]
14. Chronic effects of an alpha-glucosidase inhibitor (Bay o 1248) on intestinal disaccharidase activity in normal and diabetic mice. Lee SM; Bustamante S; Flores C; Bezerra J; Goda T; Koldovský O J Pharmacol Exp Ther; 1987 Jan; 240(1):132-7. PubMed ID: 3100764 [TBL] [Abstract][Full Text] [Related]
15. Adaptation of the small intestine to induced maldigestion in rats. Experimental pancreatic atrophy and acarbose feeding. Creutzfeldt W; Fölsch UR; Elsenhans B; Ballmann M; Conlon JM Scand J Gastroenterol Suppl; 1985; 112():45-53. PubMed ID: 3892654 [TBL] [Abstract][Full Text] [Related]
16. Disaccharidase activities in camel small intestine: biochemical investigations of maltase-glucoamylase activity. Mohamed SA; Fahmy AS; Salah HA Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):124-30. PubMed ID: 17098455 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory effect of CuSO₄ on α-glucosidase activity in ddY mice. Yoshikawa Y; Hirata R; Yasui H; Hattori M; Sakurai H Metallomics; 2010 Jan; 2(1):67-73. PubMed ID: 21072376 [TBL] [Abstract][Full Text] [Related]
18. Thielavins A, J and K: α-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora. Rivera-Chávez J; González-Andrade M; González Mdel C; Glenn AE; Mata R Phytochemistry; 2013 Oct; 94():198-205. PubMed ID: 23809634 [TBL] [Abstract][Full Text] [Related]
19. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrases in rat small intestine. Samulitis BK; Goda T; Lee SM; Koldovský O Drugs Exp Clin Res; 1987; 13(8):517-24. PubMed ID: 2962844 [TBL] [Abstract][Full Text] [Related]
20. Investigation on the Enzymatic Profile of Mulberry Alkaloids by Enzymatic Study and Molecular Docking. Liu Z; Yang Y; Dong W; Liu Q; Wang R; Pang J; Xia X; Zhu X; Liu S; Shen Z; Xiao Z; Liu Y Molecules; 2019 May; 24(9):. PubMed ID: 31071910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]