These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 9742458)
21. Evaluation of anti-hyperglycemic effect of Actinidia kolomikta (Maxim. etRur.) Maxim. root extract. Hu X; Cheng D; Wang L; Li S; Wang Y; Li K; Yang Y; Zhang Z Pak J Pharm Sci; 2015 May; 28(3 Suppl):1135-40. PubMed ID: 26051735 [TBL] [Abstract][Full Text] [Related]
22. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. Jo SH; Cho CY; Lee JY; Ha KS; Kwon YI; Apostolidis E BMC Complement Altern Med; 2016 Mar; 16():111. PubMed ID: 27036710 [TBL] [Abstract][Full Text] [Related]
23. α-Glucosidase inhibitory effect of resveratrol and piceatannol. Zhang AJ; Rimando AM; Mizuno CS; Mathews ST J Nutr Biochem; 2017 Sep; 47():86-93. PubMed ID: 28570943 [TBL] [Abstract][Full Text] [Related]
24. A risk-benefit appraisal of acarbose in the management of non-insulin-dependent diabetes mellitus. Santeusanio F; Compagnucci P Drug Saf; 1994 Dec; 11(6):432-44. PubMed ID: 7727053 [TBL] [Abstract][Full Text] [Related]
25. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Bischoff H Clin Invest Med; 1995 Aug; 18(4):303-11. PubMed ID: 8549017 [TBL] [Abstract][Full Text] [Related]
27. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase. Yamane T; Kozuka M; Konda D; Nakano Y; Nakagaki T; Ohkubo I; Ariga H J Nutr Biochem; 2016 May; 31():106-12. PubMed ID: 27133429 [TBL] [Abstract][Full Text] [Related]
28. Modification of weight gain by an alpha-glucosidase inhibitor during refeeding in rats. Kotler DP; Tierney AR; Kral JG; Bjorntorp P Am J Clin Nutr; 1984 Aug; 40(2):270-6. PubMed ID: 6380264 [TBL] [Abstract][Full Text] [Related]
29. Effects of acarbose, an alpha-glucosidase inhibitor (Bay G 5421), on orally loaded glucose, maltose and sucrose and on blood glucose control in non-insulin-dependent diabetics. Hayakawa T; Noda A; Kondo T; Okumura N Nagoya J Med Sci; 1985 Jan; 47(1-2):35-41. PubMed ID: 3887176 [No Abstract] [Full Text] [Related]
30. Effect of acarbose (BAY-g-5421) on expression of noninsulin-dependent diabetes mellitus in sucrose-fed SHR/N-corpulent rats. Carswell N; Michaelis OE; Prather ES J Nutr; 1989 Mar; 119(3):388-94. PubMed ID: 2646401 [TBL] [Abstract][Full Text] [Related]
31. Effect of sucrose and Acarbose feeding on the development of streptozotocin-induced diabetes in the rat. Goda T; Yamada K; Sugiyama M; Moriuchi S; Hosoya N J Nutr Sci Vitaminol (Tokyo); 1982 Feb; 28(1):41-56. PubMed ID: 6212654 [TBL] [Abstract][Full Text] [Related]
32. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. Miyahara C; Miyazawa M; Satoh S; Sakai A; Mizusaki S J Nutr Sci Vitaminol (Tokyo); 2004 Jun; 50(3):161-4. PubMed ID: 15386927 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of differential disaccharide excretion in urine for non-invasive investigation of altered intestinal disaccharidase activity caused by alpha-glucosidase inhibition, primary hypolactasia, and coeliac disease. Bjarnason I; Batt R; Catt S; Macpherson A; Maxton D; Menzies IS Gut; 1996 Sep; 39(3):374-81. PubMed ID: 8949640 [TBL] [Abstract][Full Text] [Related]
34. Acarbose and 1-deoxynojirimycin inhibit maltose and maltooligosaccharide hydrolysis of human small intestinal glucoamylase-maltase in two different substrate-induced modes. Breitmeier D; Günther S; Heymann H Arch Biochem Biophys; 1997 Oct; 346(1):7-14. PubMed ID: 9328278 [TBL] [Abstract][Full Text] [Related]
36. Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidates from the Thai traditional natural medicine Salacia chinensis. Morikawa T; Akaki J; Ninomiya K; Kinouchi E; Tanabe G; Pongpiriyadacha Y; Yoshikawa M; Muraoka O Nutrients; 2015 Feb; 7(3):1480-93. PubMed ID: 25734563 [TBL] [Abstract][Full Text] [Related]
37. Inhibitory activities and rules of plant gallotannins with different numbers of galloyl moieties on sucrase, maltase and α-amylase in vitro and in vivo. Liu L; Jia W; Jiang S; Zhang G; Zhao J; Xu J; Wang L; Wu D; Tao J; Yue H; Zhao X Phytomedicine; 2023 Nov; 120():155063. PubMed ID: 37716036 [TBL] [Abstract][Full Text] [Related]
38. The Postprandial Anti-Hyperglycemic Effect of Pyridoxine and Its Derivatives Using In Vitro and In Vivo Animal Models. Kim HH; Kang YR; Lee JY; Chang HB; Lee KW; Apostolidis E; Kwon YI Nutrients; 2018 Feb; 10(3):. PubMed ID: 29495635 [TBL] [Abstract][Full Text] [Related]
39. Effects of 1,5-anhydroglucitol on postprandial blood glucose and insulin levels and hydrogen excretion in rats and healthy humans. Nakamura S; Tanabe K; Yoshinaga K; Shimura F; Oku T Br J Nutr; 2017 Jul; 118(2):81-91. PubMed ID: 28820081 [TBL] [Abstract][Full Text] [Related]
40. α-Glucosidase inhibitory activity of protein-rich extracts from extruded adzuki bean in diabetic KK-Ay mice. Yao Y; Cheng X; Ren G Food Funct; 2014 May; 5(5):966-71. PubMed ID: 24615163 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]