These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 9742462)

  • 1. Degradation of konjac glucomannan by enzymes in human feces and formation of short-chain fatty acids by intestinal anaerobic bacteria.
    Matsuura Y
    J Nutr Sci Vitaminol (Tokyo); 1998 Jun; 44(3):423-36. PubMed ID: 9742462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of konjac glucomannan digestibility and fermentability with other dietary fibers in vitro.
    Chiu YT; Stewart M
    J Med Food; 2012 Feb; 15(2):120-5. PubMed ID: 22149628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids.
    Chen HL; Lin YM; Wang YC
    J Agric Food Chem; 2010 Sep; 58(18):10277-81. PubMed ID: 20799709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation.
    Stewart ML; Slavin JL
    Mol Nutr Food Res; 2006 Oct; 50(10):971-6. PubMed ID: 16967518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic production and characterization of konjac glucomannan oligosaccharides.
    Albrecht S; van Muiswinkel GC; Xu J; Schols HA; Voragen AG; Gruppen H
    J Agric Food Chem; 2011 Dec; 59(23):12658-66. PubMed ID: 22017574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between physiological effects of konjac-glucomannan and propionate in baboons fed "Western" diets.
    Venter CS; Vorster HH; Van der Nest DG
    J Nutr; 1990 Sep; 120(9):1046-53. PubMed ID: 2168943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum.
    Jakobsdottir G; Jädert C; Holm L; Nyman ME
    Br J Nutr; 2013 Nov; 110(9):1565-72. PubMed ID: 23531375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unhydrolyzed and hydrolyzed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice.
    Chen HL; Fan YH; Chen ME; Chan Y
    Nutrition; 2005 Oct; 21(10):1059-64. PubMed ID: 16157244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults.
    Chen HL; Cheng HC; Liu YJ; Liu SY; Wu WT
    Nutrition; 2006; 22(11-12):1112-9. PubMed ID: 17027233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group.
    Nakajima N; Matsuura Y
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1739-42. PubMed ID: 9362121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary-fiber-degrading enzymes from a human intestinal Clostridium and their application to oligosaccharide production from nonstarchy polysaccharides using immobilized cells.
    Nakajima N; Ishihara K; Matsuura Y
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):182-9. PubMed ID: 12111144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pattern of Specific Oxidation of Konjac Glucomannan with TEMPO/NaBr/NaClO system.
    Wu F; Yan N; Guo Y; Yu X; Yi L; Ouyang Y; Wang X; Zhang Z
    Carbohydr Res; 2022 May; 515():108558. PubMed ID: 35430432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan.
    Tester RF; Al-Ghazzewi FH
    J Sci Food Agric; 2016 Aug; 96(10):3283-91. PubMed ID: 26676961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid production and conversion of konjac glucomannan during in vitro colonic fermentation affected by exogenous microorganisms and tea polyphenols.
    Zhao XH; Geng Q
    Int J Food Sci Nutr; 2016; 67(3):274-82. PubMed ID: 26902110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans.
    Mortensen PB; Holtug K; Rasmussen HS
    J Nutr; 1988 Mar; 118(3):321-5. PubMed ID: 2832567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria.
    Al-Ghazzewi FH; Tester RF
    J Sci Food Agric; 2012 Aug; 92(11):2394-6. PubMed ID: 22495737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.
    Cibis KG; Gneipel A; König H
    J Biotechnol; 2016 Feb; 220():51-63. PubMed ID: 26779817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucomannan utilization operon of Bacillus subtilis.
    Sadaie Y; Nakadate H; Fukui R; Yee LM; Asai K
    FEMS Microbiol Lett; 2008 Feb; 279(1):103-9. PubMed ID: 18177310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process].
    Ren N; Liu M; Wang A; Ding J; Li H
    Huan Jing Ke Xue; 2003 Jul; 24(4):89-93. PubMed ID: 14551964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet.
    Zhai X; Lin D; Zhao Y; Li W; Yang X
    J Agric Food Chem; 2018 Dec; 66(48):12706-12718. PubMed ID: 30411889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.