These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9742736)

  • 1. [Central mechanisms of regulation of voluntary movements in 6-10-year-old children. II. Electrophysiologic analysis of movement performance in right-handed children].
    Bezrukikh MM
    Fiziol Cheloveka; 1998; 24(3):34-41. PubMed ID: 9742736
    [No Abstract]   [Full Text] [Related]  

  • 2. [Central mechanisms of the organization and regulation of voluntary movements in 6-10-year-old children. I. Electrophysiologic analysis of the process of preparation for movement].
    Bezrukikh MM
    Fiziol Cheloveka; 1997; 23(6):31-9. PubMed ID: 9494265
    [No Abstract]   [Full Text] [Related]  

  • 3. [Spatial organization of EEG in right-handed and left-handed subjects during voluntary movements].
    Zhavoronkova LA
    Fiziol Cheloveka; 1992; 18(6):5-15. PubMed ID: 1286791
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in voluntary movement execution in Huntington's disease are related to the dominant motor system: evidence from event-related potentials.
    Beste C; Konrad C; Saft C; Ukas T; Andrich J; Pfleiderer B; Hausmann M; Falkenstein M
    Exp Neurol; 2009 Mar; 216(1):148-57. PubMed ID: 19111540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric spatiotemporal patterns of event-related desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study.
    Bai O; Mari Z; Vorbach S; Hallett M
    Clin Neurophysiol; 2005 May; 116(5):1213-21. PubMed ID: 15826864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Age-dependent features of the readiness potential during performance of simple voluntary movement].
    Orekhova EV; Malykh SB
    Fiziol Cheloveka; 1997; 23(4):21-7. PubMed ID: 9312488
    [No Abstract]   [Full Text] [Related]  

  • 7. Preparative activities in posterior parietal cortex for self-paced movement in monkeys.
    Gemba H; Matsuura-Nakao K; Matsuzaki R
    Neurosci Lett; 2004 Feb; 357(1):68-72. PubMed ID: 15036615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dynamic changes in EEG spectral structure during voluntary movements in man].
    Bondar' AT; Fedotchev AI
    Fiziol Cheloveka; 1999; 25(5):64-73. PubMed ID: 10570885
    [No Abstract]   [Full Text] [Related]  

  • 9. Left hemisphere specialization for the control of voluntary movement rate.
    Agnew JA; Zeffiro TA; Eden GF
    Neuroimage; 2004 May; 22(1):289-303. PubMed ID: 15110019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Features of the brain functional organization in right- and left-handed 6-7 years old children during visuospatial performance of different complexity. Part II. Analysis of EEG parameters during visuospatial performance of high level complexity].
    Bezrukikh MM; Khrianin AV
    Fiziol Cheloveka; 2004; 30(1):50-5. PubMed ID: 15040286
    [No Abstract]   [Full Text] [Related]  

  • 11. How do children prepare to react? Imaging maturation of motor preparation and stimulus anticipation by late contingent negative variation.
    Bender S; Weisbrod M; Bornfleth H; Resch F; Oelkers-Ax R
    Neuroimage; 2005 Oct; 27(4):737-52. PubMed ID: 16027009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Features of the brain functional organization in right- and left-handed 6-7 years old children during visuospatial performance of different complexity. Part I. Comparative analysis of EEG parameters during simple visuospatial performance].
    Bezrukikh MM; Khrianin AV
    Fiziol Cheloveka; 2003; 29(3):33-40. PubMed ID: 12845779
    [No Abstract]   [Full Text] [Related]  

  • 13. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study.
    Babiloni C; Babiloni F; Carducci F; Cincotti F; Cocozza G; Del Percio C; Moretti DV; Rossini PM
    Neuroimage; 2002 Oct; 17(2):559-72. PubMed ID: 12377134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of somatosensory evoked potentials after decision of voluntary movement.
    Hoshiyama M; Sheean G
    Electroencephalogr Clin Neurophysiol Suppl; 1999; 49():68-72. PubMed ID: 10533088
    [No Abstract]   [Full Text] [Related]  

  • 15. [Age-related dynamics of the motion reaction in school children].
    Makarenko MV; Petrenko IuO; Baĭda OH; Men'shykh OE
    Fiziol Zh (1994); 2009; 55(2):58-62. PubMed ID: 19526850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-motion positivity during self-paced movements of finger and mouth.
    Bortoletto M; Sarlo M; Poli S; Stegagno L
    Neuroreport; 2006 Jun; 17(9):883-6. PubMed ID: 16738481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements.
    Erbil N; Ungan P
    Brain Res; 2007 Sep; 1169():44-56. PubMed ID: 17689502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of manual skill: a computerized analysis of single peg movements and stochastic resonance hypothesis of cerebral laterality.
    Elalmis DD; Tan U
    Int J Neurosci; 2008 Mar; 118(3):399-432. PubMed ID: 18300013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving to a different beat.
    Miall RC; Ivry R
    Nat Neurosci; 2004 Oct; 7(10):1025-6. PubMed ID: 15452570
    [No Abstract]   [Full Text] [Related]  

  • 20. Post-movement beta synchronization after kinesthetic illusion, active and passive movements.
    Keinrath C; Wriessnegger S; Müller-Putz GR; Pfurtscheller G
    Int J Psychophysiol; 2006 Nov; 62(2):321-7. PubMed ID: 16904786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.