These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 9743079)

  • 41. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gravity-specific adaptation of the angular vestibuloocular reflex: dependence on head orientation with regard to gravity.
    Yakushin SB; Raphan T; Cohen B
    J Neurophysiol; 2003 Jan; 89(1):571-86. PubMed ID: 12522203
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Short-term vestibulo-ocular adaptation: influence of context.
    Kramer P; Shelhamer M; Zee DS
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):60-4. PubMed ID: 9674516
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recording eye movements in mice: a new approach to investigate the molecular basis of cerebellar control of motor learning and motor timing.
    de Zeeuw CI; van Alphen AM; Koekkoek SK; Buharin E; Coesmans MP; Morpurgo MM; van den Burg J
    Otolaryngol Head Neck Surg; 1998 Sep; 119(3):193-203. PubMed ID: 9743075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-Lasting Visuo-Vestibular Mismatch in Freely-Behaving Mice Reduces the Vestibulo-Ocular Reflex and Leads to Neural Changes in the Direct Vestibular Pathway.
    Carcaud J; França de Barros F; Idoux E; Eugène D; Reveret L; Moore LE; Vidal PP; Beraneck M
    eNeuro; 2017; 4(1):. PubMed ID: 28303261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery.
    Mantokoudis G; Schubert MC; Tehrani AS; Wong AL; Agrawal Y
    Otol Neurotol; 2014 Jan; 35(1):148-54. PubMed ID: 23965525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of cerebellar flocculus in adaptive gain control of ocular reflexes.
    Nagao S; Yoshioka N; Hensch T; Hasegawa I; Nakamura N; Nagao Y; Ito M
    Acta Otolaryngol Suppl; 1991; 481():234-6. PubMed ID: 1927383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [From vestibular nystagmus to the transfer function of the vestibulo-ocular reflex].
    Kopp C; Njeugna E; Kalfane K; Eichhorn JL; Bouveresse A
    Ann Otolaryngol Chir Cervicofac; 1999 Dec; 116(6):358-64. PubMed ID: 10615527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vestibular adaptation to space in monkeys.
    Dai M; Raphan T; Kozlovskaya I; Cohen B
    Otolaryngol Head Neck Surg; 1998 Jul; 119(1):65-77. PubMed ID: 9674517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Once-Daily High Dose of Intraperitoneal Ascorbate Improves Vestibulo-ocular Reflex Compensation After Unilateral Labyrinthectomy in the Mouse.
    Khan SI; Brichta AM; Migliaccio AA
    J Assoc Res Otolaryngol; 2022 Feb; 23(1):27-34. PubMed ID: 34981264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The functional operation of the vestibulo-ocular reflex.
    Robinson DA
    Prog Brain Res; 2022; 267(1):95-130. PubMed ID: 35074069
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of the location of vestibular lesions on the basis of vestibulo-ocular reflex measurements.
    Honrubia V; Baloh RW; Yee RD; Jenkins HA
    Am J Otolaryngol; 1980 Aug; 1(4):291-301. PubMed ID: 6969553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth.
    Jareonsettasin P; Otero-Millan J; Ward BK; Roberts DC; Schubert MC; Zee DS
    Curr Biol; 2016 May; 26(10):1359-66. PubMed ID: 27185559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal correlates of vestibulo-ocular reflex adaptation in the alert guinea-pig.
    Serafin M; Ris L; Bernard P; Muhlethaler M; Godaux E; Vidal PP
    Eur J Neurosci; 1999 May; 11(5):1827-30. PubMed ID: 10215935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation.
    Nguyen TA; DiGiovanna J; Cavuscens S; Ranieri M; Guinand N; van de Berg R; Carpaneto J; Kingma H; Guyot JP; Micera S; Fornos AP
    J Neural Eng; 2016 Aug; 13(4):046023. PubMed ID: 27396631
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity.
    Quinn KJ; Didier AJ; Baker JF; Peterson BW
    Brain Res Bull; 1998 Jul; 46(4):333-46. PubMed ID: 9671263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Histochemical Characterization of the Vestibular Y-Group in Monkey.
    Zeeh C; Mayadali ÜS; Horn AKE
    Cerebellum; 2021 Oct; 20(5):701-716. PubMed ID: 33083961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Signal processing in the vestibulo-ocular reflex.
    Robinson DA
    Prog Brain Res; 2022; 267(1):169-181. PubMed ID: 35074053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo-in vitro correlations in the central vestibular system: a bridge too far?
    Vidal PP; Babalian A; Vibert N; Serafin M; Mühlethaler M
    Ann N Y Acad Sci; 1996 Jun; 781():424-36. PubMed ID: 8694432
    [No Abstract]   [Full Text] [Related]  

  • 60. Role of cholinergic mossy fibers in vestibular nuclei in the development of vestibular compensation.
    Kitahara T; Fukushima M; Takeda N; Saika T; Uno A; Kubo T
    Acta Otolaryngol Suppl; 2001; 545():101-4. PubMed ID: 11677719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.