These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9743080)

  • 41. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents.
    Peterson GM
    Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey.
    Goldberg JM; Smith CE; Fernández C
    J Neurophysiol; 1984 Jun; 51(6):1236-56. PubMed ID: 6737029
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of streptomycin intoxication on vestibular nerve regeneration and posture recovery.
    Kadir A; Suzuki M; Yajin K; Harada Y
    Acta Otolaryngol; 1997 May; 117(3):376-81. PubMed ID: 9199523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil.
    Purcell IM; Perachio AA
    J Neurophysiol; 1997 Dec; 78(6):3234-48. PubMed ID: 9405542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regenerating afferent fibers stimulate the recovery of mauthner cell dendritic branching in the axolotl.
    Goodman LA; Covell DA; Model PG
    J Neurosci; 1988 Aug; 8(8):3025-34. PubMed ID: 3411367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chronic Schwann cell denervation and the presence of a sensory nerve reduce motor axonal regeneration.
    Sulaiman OA; Midha R; Munro CA; Matsuyama T; Al-Majed A; Gordon T
    Exp Neurol; 2002 Aug; 176(2):342-54. PubMed ID: 12359176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-frequency tuning properties of bullfrog lagenar vestibular afferent fibers.
    Cortopassi KA; Lewis ER
    J Vestib Res; 1996; 6(2):105-19. PubMed ID: 8925113
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Innervation of regenerated spindles in muscle grafts of the rat.
    Walro JM; Kucera J; Cui F; Staffeld CG
    Histochemistry; 1989; 92(1):1-13. PubMed ID: 2527837
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anatomical specificity of regenerated muscle sensory afferents in the spinal cord of the bullfrog.
    Peng YY; Frank E
    J Neurobiol; 1988 Dec; 19(8):727-42. PubMed ID: 2466950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regeneration and recovery of cat muscle spindles after devascularization.
    Barker D; Scott JJ
    J Physiol; 1990 May; 424():27-39. PubMed ID: 2144024
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Responses of frog primary vestibular afferents to direct vibration of a semicircular canal].
    Orlov IV
    Fiziol Zh SSSR Im I M Sechenova; 1980 Jan; 66(1):48-55. PubMed ID: 6965915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regeneration of the eight cranial nerve. I. Anatomic verification in the bullfrog.
    Newman A; Kuruvilla A; Pereda A; Honrubia V
    Laryngoscope; 1986 May; 96(5):484-93. PubMed ID: 3486335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The relationship of conduction velocity to other physiological properties of the cat's horizontal canal neurons.
    Yagi T; Simpson NE; Markham CH
    Exp Brain Res; 1977 Dec; 30(4):587-600. PubMed ID: 598443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Relation between the spontaneous activity and dynamic characteristics of primary afferents of the lateral semicircular canal in frogs].
    Orlov IV
    Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1798-1806. PubMed ID: 6977465
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of cat semicircular canal afferents to sinusoidal polarizing currents: implications for input-output properties of second-order neurons.
    Ezure K; Cohen MS; Wilson VJ
    J Neurophysiol; 1983 Mar; 49(3):639-48. PubMed ID: 6834091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vestibular endorgan of the frog after the space flight and postural alteration of the neurectomized frog--its morphological and functional resilience.
    Suzuki M; Harada Y; Sekitani T
    J Vestib Res; 1993; 3(3):253-8. PubMed ID: 8275260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery mechanism of postural disturbance after vestibular neurectomy.
    Suzuki M; Takahashi H; Yoshida S; Kawaguchi K; Harada Y
    ORL J Otorhinolaryngol Relat Spec; 1991; 53(5):290-3. PubMed ID: 1686646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Morphophysiological and ultrastructural studies in the mammalian cristae ampullares.
    Goldberg JM; Lysakowski A; Fernández C
    Hear Res; 1990 Nov; 49(1-3):89-102. PubMed ID: 2292511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.
    Pfanzelt S; Rössert C; Rohregger M; Glasauer S; Moore LE; Straka H
    J Neurosci; 2008 Oct; 28(41):10349-62. PubMed ID: 18842894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.