These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9743279)

  • 1. Quantitative electro-oculography and electroencephalography as indices of alertness.
    Hyoki K; Shigeta M; Tsuno N; Kawamuro Y; Kinoshita T
    Electroencephalogr Clin Neurophysiol; 1998 Mar; 106(3):213-9. PubMed ID: 9743279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic sleep stage classification using two-channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Oct; 166(1):109-15. PubMed ID: 17681382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of two-channel electro-oculography in automatic detection of unintentional sleep onset.
    Virkkala J; Hasan J; Värri A; Himanen SL; Härmä M
    J Neurosci Methods; 2007 Jun; 163(1):137-44. PubMed ID: 17376536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet analysis of electroencephalographic and electro-oculographic changes during the sleep onset period.
    Magosso E; Ursino M; Provini F; Montagna P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4006-10. PubMed ID: 18002878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vigilance on the civil flight deck: incidence of sleepiness and sleep during long-haul flights and associated changes in physiological parameters.
    Wright N; McGown A
    Ergonomics; 2001 Jan; 44(1):82-106. PubMed ID: 11214900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.
    Magosso E; Ursino M; Zaniboni A; Provini F; Montagna P
    Clin Neurophysiol; 2007 May; 118(5):1122-33. PubMed ID: 17368090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic sleep stage classification using two facial electrodes.
    Virkkala J; Velin R; Himanen SL; Värri A; Müller K; Hasan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1643-6. PubMed ID: 19162992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.
    Li Y; Tang X; Xu Z; Liu W; Li J
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):147-55. PubMed ID: 26934877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow eye movements and EEG power spectra during wake-sleep transition.
    De Gennaro L; Ferrara M; Ferlazzo F; Bertini M
    Clin Neurophysiol; 2000 Dec; 111(12):2107-15. PubMed ID: 11090759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diurnal variations in the waking EEG: comparisons with sleep latencies and subjective alertness.
    Lafrance C; Dumont M
    J Sleep Res; 2000 Sep; 9(3):243-8. PubMed ID: 11012862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Distribution of electroencephalograph power density in patients with severe obstructive sleep apnea during different sleep stages].
    Deng Y; Tian X; Chen BY; Zhou N; Xia M; Bai WW; Dou MM; Liu XY
    Zhonghua Jie He He Hu Xi Za Zhi; 2017 Apr; 40(4):258-262. PubMed ID: 28395403
    [No Abstract]   [Full Text] [Related]  

  • 12. Electroencephalographic sleep inertia of the awakening brain.
    Marzano C; Ferrara M; Moroni F; De Gennaro L
    Neuroscience; 2011 Mar; 176():308-17. PubMed ID: 21167917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.
    Christensen JA; Zoetmulder M; Koch H; Frandsen R; Arvastson L; Christensen SR; Jennum P; Sorensen HB
    J Neurosci Methods; 2014 Sep; 235():262-76. PubMed ID: 25088694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vestibulo-ocular response during transient arousal shifts in man.
    Kasper J; Diefenhardt A; Mackert A; Thoden U
    Acta Otolaryngol; 1992; 112(1):1-6. PubMed ID: 1575025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Microsleep from the electro- and psychophysiological point of view].
    Faber J; Novák M; Svoboda P; Tatarinov V; Tichý T
    Sb Lek; 2003; 104(4):375-85. PubMed ID: 15320529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents.
    Papadelis C; Chen Z; Kourtidou-Papadeli C; Bamidis PD; Chouvarda I; Bekiaris E; Maglaveras N
    Clin Neurophysiol; 2007 Sep; 118(9):1906-22. PubMed ID: 17652020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of ocular artifacts from the REM sleep EEG.
    Waterman D; Woestenburg JC; Elton M; Hofman W; Kok A
    Sleep; 1992 Aug; 15(4):371-5. PubMed ID: 1519014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-applied somnography: technical feasibility of electroencephalography and electro-oculography signal characteristics in sleep staging of suspected sleep-disordered adults.
    Rusanen M; Korkalainen H; Gretarsdottir H; Siilak T; Olafsdottir KA; Töyräs J; Myllymaa S; Arnardottir ES; Leppänen T; Kainulainen S
    J Sleep Res; 2024 Apr; 33(2):e13977. PubMed ID: 37400248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal variations of alpha and sigma band EEG in the waking-sleeping transition period.
    Morikawa T; Hayashi M; Hori T
    Percept Mot Skills; 2002 Aug; 95(1):131-54. PubMed ID: 12365247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection of slow wave sleep using two channel electro-oculography.
    Virkkala J; Hasan J; Värri A; Himanen SL; Müller K
    J Neurosci Methods; 2007 Feb; 160(1):171-7. PubMed ID: 16965823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.