These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 9743451)
1. The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method. Coombes AG; Yeh MK; Lavelle EC; Davis SS J Control Release; 1998 Mar; 52(3):311-20. PubMed ID: 9743451 [TBL] [Abstract][Full Text] [Related]
2. Influence of formulation parameters on the characteristics of poly(D, L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA. Capan Y; Woo BH; Gebrekidan S; Ahmed S; DeLuca PP J Control Release; 1999 Aug; 60(2-3):279-86. PubMed ID: 10425333 [TBL] [Abstract][Full Text] [Related]
3. Improving protein delivery from microparticles using blends of poly(DL lactide co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Yeh MK; Davis SS; Coombes AG Pharm Res; 1996 Nov; 13(11):1693-8. PubMed ID: 8956336 [TBL] [Abstract][Full Text] [Related]
4. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Panyam J; Dali MM; Sahoo SK; Ma W; Chakravarthi SS; Amidon GL; Levy RJ; Labhasetwar V J Control Release; 2003 Sep; 92(1-2):173-87. PubMed ID: 14499195 [TBL] [Abstract][Full Text] [Related]
5. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. Perez C; Sanchez A; Putnam D; Ting D; Langer R; Alonso MJ J Control Release; 2001 Jul; 75(1-2):211-24. PubMed ID: 11451511 [TBL] [Abstract][Full Text] [Related]
6. Effects of solvent selection and fabrication method on the characteristics of biodegradable poly(lactide-co-glycolide) microspheres containing ovalbumin. Cho SW; Song SH; Choi YW Arch Pharm Res; 2000 Aug; 23(4):385-90. PubMed ID: 10976588 [TBL] [Abstract][Full Text] [Related]
8. PLG microparticles stabilised using enteric coating polymers as oral vaccine delivery systems. Delgado A; Lavelle EC; Hartshorne M; Davis SS Vaccine; 1999 Jul; 17(22):2927-38. PubMed ID: 10438065 [TBL] [Abstract][Full Text] [Related]
9. Optimization of preparative conditions for polylactide (PLA) microspheres containing ovalbumin. Uchida T; Yoshida K; Ninomiya A; Goto S Chem Pharm Bull (Tokyo); 1995 Sep; 43(9):1569-73. PubMed ID: 7586084 [TBL] [Abstract][Full Text] [Related]
10. The stability and immunogenicity of a protein antigen encapsulated in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Lavelle EC; Yeh MK; Coombes AG; Davis SS Vaccine; 1999 Feb; 17(6):512-29. PubMed ID: 10075157 [TBL] [Abstract][Full Text] [Related]
11. Preparation and evaluation of double-walled microparticles prepared with a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method. Devrim B; Bozkır A J Microencapsul; 2013; 30(8):741-54. PubMed ID: 23631379 [TBL] [Abstract][Full Text] [Related]
12. The distribution of protein associated with poly(DL-lactide co-glycolide) microparticles and its degradation in simulated body fluids. Takahata H; Lavelle EC; Coombes AG; Davis SS J Control Release; 1998 Jan; 50(1-3):237-46. PubMed ID: 9685890 [TBL] [Abstract][Full Text] [Related]
13. Development of microparticles for controlled release of resveratrol to adipose tissue and the impact of drug loading on particle morphology and drug release. Isely C; Hendley MA; Murphy KP; Kader S; Annamalai P; Jabbari E; Gower RM Int J Pharm; 2019 Sep; 568():118469. PubMed ID: 31265884 [TBL] [Abstract][Full Text] [Related]
14. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Yeh MK J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421 [TBL] [Abstract][Full Text] [Related]
16. Microparticles produced by the hydrogel template method for sustained drug delivery. Lu Y; Sturek M; Park K Int J Pharm; 2014 Jan; 461(1-2):258-69. PubMed ID: 24333903 [TBL] [Abstract][Full Text] [Related]
17. Reduction in burst release after coating poly(D,L-lactide-co-glycolide) (PLGA) microparticles with a drug-free PLGA layer. Ahmed AR; Elkharraz K; Irfan M; Bodmeier R Pharm Dev Technol; 2012; 17(1):66-72. PubMed ID: 20854130 [TBL] [Abstract][Full Text] [Related]
18. Oral immunogenicity of the inactivated Vibrio cholerae whole-cell vaccine encapsulated in biodegradable microparticles. Yeh MK; Liu YT; Chen JL; Chiang CH J Control Release; 2002 Aug; 82(2-3):237-47. PubMed ID: 12175740 [TBL] [Abstract][Full Text] [Related]
19. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795 [TBL] [Abstract][Full Text] [Related]
20. Optimization of the encapsulation and release of beta-lactoglobulin entrapped poly(DL-lactide-co-glycolide) microspheres. Rojas J; Pinto-Alphandary H; Leo E; Pecquet S; Couvreur P; Fattal E Int J Pharm; 1999 Jun; 183(1):67-71. PubMed ID: 10361157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]