These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 974367)

  • 121. Morphine and ethanol: selective depletion of regional brain calcium.
    Ross DH; Medina MA; Cardenas HL
    Science; 1974 Oct; 186(4158):63-5. PubMed ID: 4420821
    [TBL] [Abstract][Full Text] [Related]  

  • 122. The effect of central stimulant drugs on acetylcholine release from rat cerebral cortex.
    Hemsworth BA; Neal MJ
    Br J Pharmacol; 1968 Nov; 34(3):543-50. PubMed ID: 5726785
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Relationship between acetylcholine synthesis and its concentration in rat cerebral cortex.
    Sharkawi M; Schulman MP
    Br J Pharmacol; 1969 Jun; 36(2):373-9. PubMed ID: 5787672
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Ketamine is the anesthetic of choice in studies on neocortical acetylcholine release.
    Sanfaçon G; Labrecque G
    Eur J Pharmacol; 1982 Dec; 85(3-4):347-50. PubMed ID: 7151877
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Comparison between naloxone reversal of morphine and electrical stimulation induced analgesia in the rat mesencephalon.
    Pert A; Walter M
    Life Sci; 1976 Oct; 19(7):1023-32. PubMed ID: 994709
    [No Abstract]   [Full Text] [Related]  

  • 126. Differential morphine effects on evoked impulse activity in the caudate and central grey.
    Palmer MR; Klemm WR
    Brain Res Bull; 1977; 2(4):279-87. PubMed ID: 912441
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Patterns of unit responses to incremental doses of morphine in central gray, reticular formation, medial thalamus, caudate nucleus, hypothalamus, septum and hippocampus in unanesthetized rats.
    Dafny N; Brown M; Burks TF; Rigor BM
    Neuropharmacology; 1979 May; 18(5):489-95. PubMed ID: 460545
    [No Abstract]   [Full Text] [Related]  

  • 128. Pharmacokinetics of naloxone in rats and in man: basis for its potency and short duration of action.
    Ngai SH; Berkowitz BA; Yang JC; Hempstead J; Spector S
    Anesthesiology; 1976 May; 44(5):398-401. PubMed ID: 1267205
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Effect of substance P on medial forebrain bundle self-stimulation in rats following intracerebral administration.
    Goldstein JM; Malick JB
    Pharmacol Biochem Behav; 1977 Nov; 7(5):475-8. PubMed ID: 594092
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Effects of naloxone and its quarternary analogue on stimulation-induced feeding.
    Carr KD; Simon EJ
    Neuropharmacology; 1983 Jan; 22(1):127-30. PubMed ID: 6843782
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Involvement of the septum in central dopamine-acetylcholine interactions in morphine-treated cats.
    Megens AA; Cools AR
    Pharmacol Biochem Behav; 1983 May; 18(5):761-7. PubMed ID: 6344105
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Proanaphylactic action of morphine is mediated through a central cholinergic mechanism.
    Amir S
    Eur J Pharmacol; 1983 Nov; 95(1-2):117-9. PubMed ID: 6667710
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Effects of morphine and pentobarbitone on acetylcholine synthesis by rat cerebral cortex.
    Sharkawi M
    Br J Pharmacol; 1970 Sep; 40(1):86-91. PubMed ID: 4321081
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats.
    Li GZ; Liu ZH; Wei X; Zhao P; Yang CX; Xu MY
    Iran J Basic Med Sci; 2015 Jul; 18(7):664-71. PubMed ID: 26351557
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Morphine-induced skin wheals: a possible model for the study of histamine release.
    Saucedo R; Erill S
    Clin Pharmacol Ther; 1985 Oct; 38(4):365-70. PubMed ID: 2412748
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Angiotensin II inhibits cortical cholinergic function: implications for cognition.
    Barnes JM; Barnes NM; Costall B; Horovitz ZP; Ironside JW; Naylor RJ; Williams TJ
    J Cardiovasc Pharmacol; 1990 Aug; 16(2):234-8. PubMed ID: 1697379
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat.
    Lai H; Carino MA; Horita A; Guy AW
    Bioelectromagnetics; 1993; 14(1):5-15. PubMed ID: 8442782
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Inhibition by morphine of the release of [14c]acetylcholine from rat brain cortex slices.
    Sharkawi M; Schulman MP
    J Pharm Pharmacol; 1969 Aug; 21(8):546-7. PubMed ID: 4389722
    [No Abstract]   [Full Text] [Related]  

  • 139. Cortical evoked responses and transcutaneous electrotherapy.
    Salar G; Iob I; Mingrino S
    Neurology; 1980 Jun; 30(6):663-5. PubMed ID: 6966771
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Effects of morphine on DNA synthesis in neonatal rat brain.
    Kornblum HI; Loughlin SE; Leslie FM
    Brain Res; 1987 Jan; 428(1):45-52. PubMed ID: 3815116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.